Air at 2 bar and 40°C is heated as it flows through tube of diameter 30mm at a velocity of 10 m/s. Calculate the heat transfer per unit length of the tube when wall temperature is maintained at 100° C all along length of the tube. How much would be the bulk temperature increase over one metre length of the tube ? Use the following relation : Nu = 0.023 Re8 P4 u = 20.6 x 106 N- s/m2: Pr = 0.694 c, 1.009 kJ/kg°C; k = 0.0297 kg/m°C;

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.22P
icon
Related questions
Question
Air at 2 bar and 40°C is heated as it flows through tube of diameter 30mm at a
velocity of 10 m/s. Calculate the heat transfer per unit length of the tube when wall temperature is
maintained at 100°C all along length of the tube. How much would be the bulk temperature increase
over one metre length of the tube ? Use the following relation :
Nu = 0.023 Re08 Pr04
u = 20.6 x 106 N- s/m?: Pr = 0.694 c, 1.009 kJ/kg°C; k = 0.0297 kg/m°C;
Transcribed Image Text:Air at 2 bar and 40°C is heated as it flows through tube of diameter 30mm at a velocity of 10 m/s. Calculate the heat transfer per unit length of the tube when wall temperature is maintained at 100°C all along length of the tube. How much would be the bulk temperature increase over one metre length of the tube ? Use the following relation : Nu = 0.023 Re08 Pr04 u = 20.6 x 106 N- s/m?: Pr = 0.694 c, 1.009 kJ/kg°C; k = 0.0297 kg/m°C;
Expert Solution
steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning