An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15 ° << 1°. The indices of refraction in free space and the atmosphere are no =1.00000 …, and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near ρ--> 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations. (a) When the ISS is directly above the laser communications receiver on the ground, what is θ2 ? (Draw a diagram) (b) (8) What is θ2 if θ1 is 45°? (c) What is the frequency of this laser transmitted from the ISS in free space, and in the atmosphere? (d)  What is the refracted wavelength, and the speed of the laser beam in air?       (e) If the communications bit rate is the inverse of the laser frequency period [s], what is this bit rate?

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter3: The Quantum Theroy Of Light
Section: Chapter Questions
Problem 38P: As a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms...
icon
Related questions
Question

An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15 ° << 1°. The indices of refraction in free space and the atmosphere are no =1.00000 …, and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near ρ--> 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations.

(a) When the ISS is directly above the laser communications receiver on the ground, what is θ2 ? (Draw a diagram)







(b) (8) What is θ2 if θ1 is 45°?








(c) What is the frequency of this laser transmitted from the ISS in free space, and in the atmosphere?





(d)  What is the refracted wavelength, and the speed of the laser beam in air?

 

 

 

(e) If the communications bit rate is the inverse of the laser frequency period [s], what is this bit rate?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Compton effect
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning