
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An earth satellite remains in orbit at a distance of 17100 x 10^4km from the center of the earth. The universal gravitational constant is 6.67 x 10^-11 N•m^2/kg^2 and the mass of the earth is 5.98 x 10^24kg.
What speed in m/s would the satellite have to maintain?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The International Space Station has a mass of 4.19×105 kg and orbits at a radius of 6.79×106 m from the center of Earth. Find (a) the gravitational force exerted by Earth on the space station, (b) the space station's gravitational potential energy, and (c) the weight of an 80.0−kg80.0−kg astronaut living inside the station.arrow_forwardA satellite is in a circular low Earth orbit at an altitude of 328 km above the equator's surface. For Earth's radius at the equator, use RE, eq = 6.38 ✕ 106 m. Assuming only the force of Earth's gravity acts on the satellite, determine the smallest required change in the satellite's speed if it is to escape Earth's gravity and never return. m/sarrow_forwardAn Earth satellite has an orbital period of 5.3 h. What is its orbital radius? (ME = 5.98 x 1024 kg)arrow_forward
- A 2900 kg satellite orbits the earth in a circular orbit 1200 km above earth's surface. The earth's mass is 5.97 × 1024 kg, its radius is 6.3 × 106 m, and G = 6.67 × 1011 N⋅m2/kg2 Determine the orbital speed of the satellite. v = m/sarrow_forwardA 700 Kg satellite is placed h = 2.5 x 10^5 m above the earth. If the gravitational pull of earth is equal to the centripetal force on the satellite, determine the speed of the satellite in its orbit. Earth mass: 5.98 x 10^24 Earth radius = 6.67 x 10^ -11 Nm^2/Kg^2arrow_forwardA satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c)Calculate the value of the total energy E in joules.arrow_forward
- Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 3.1x10^4 m/s when at a distance of 2.7x10^11 m from the center of the sun, what is its speed when at a distance of 4.7x10^10 m? Mass of the Sun is 1.99×10^30 kg. Gravitational constant is G=6.67×10^(−11) m^3 /(kg⋅s). What is the formula? (Answer: 75006.70209088 m/s)arrow_forwardAn earth-like planet with a mass of 8.00×1024 kg has a space station of mass 4.70×104 kg orbiting it at a distance of 3.00×105 km. What is the gravitational potential energy between the space station and the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg) Jarrow_forwardA comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.9 x 1010 m (inside the orbit of Mercury), at which point its speed is 9.3 x 104 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = m/sarrow_forward
- %20tiene%20una%20masa%20de%20100%20kg%20y%20se%20encuentra%20a%20u... INGLÉS ESPAÑOL FRANCÉS A satellite of the Earth has a mass of 100 kg and is at a height of 2.0x10 3 km above the earth's surface. Determine the gravitational potential energy of the Earth-satellite system. Enviar com Tardadoarrow_forwardA 342 kg satellite currently orbits the Earth in a circle with radius 6.51x10^7m. The satellite must be moved to a new circular orbit of radius 8.22x10^7m. Calculate the additional total mechanical energy that the satellite requires. The mass of the Earth is 5.97x10^24kg G is 6.67x10^-11Nm^2/kg^2arrow_forwardAssuming that the Earth has a uniform density, ρ=5540.0 kg/m3, what is the value of the gravitational acceleration gd at a distance d=4900.0 km from the Earth's center?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON