Consider 1.5 mol of pure nitrogen gas N2 which we will treat as a diatomic ideal gas. From 100 K to 1000 K, the gas has three translational and two rotational degrees of freedom. Above 1000 K, there are two additional vibrational degrees of freedom. The molar mass of N2 is 0.028 kg/mol. a. If the nitrogen molecules have an rms translational molecular speed of 511 m/s, what is the temperature of the gas? b. What is the internal energy U of the nitrogen gas at the temperature from part a? c. If the nitrogen gas has a pressure of 1.2 atm, what volume (in liters) does it occupy at the temperature from part a? d How much heat would be required to raise the temperature of the gas from 1500 K to 1800 K, at a constant volume? Remember that vibrational degrees of freedom are active at these temperatures.

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter21: The Kinetic Theory Of Gases
Section: Chapter Questions
Problem 21.1OQ: Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in...
icon
Related questions
Question

Consider 1.5 mol of pure nitrogen gas N2 which we will treat as a diatomic ideal gas. From 100 K to 1000 K, the gas has three translational and two rotational degrees of freedom. Above 1000 K, there are two additional vibrational degrees of freedom. The molar mass of N2 is 0.028 kg/mol.

a. If the nitrogen molecules have an rms translational molecular speed of 511 m/s, what is the temperature of the gas?

b. What is the internal energy U of the nitrogen gas at the temperature from part a?

c. If the nitrogen gas has a pressure of 1.2 atm, what volume (in liters) does it occupy at the temperature from part a?

d How much heat would be required to raise the temperature of the gas from 1500 K to 1800 K, at a constant volume? Remember that vibrational degrees of freedom are active at these temperatures.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Maxwell speed distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning