Consider an oxygen (O₂) molecule in a bottle of air. Imagine that at a certain time, we locate the molecule along the x axis to within an uncertainty of 0.1 nm. (a) What is the minimum uncertainty in the molecule's x-velocity required by the Heisenberg Uncertainty Principle? (b) How does this compare (roughly) to the magnitude of the molecule's average x-velocity due to its thermal motion at room temperature? (Hints: Avogadro's number of oxygen molecules has a mass of about 32 g. At an absolute temperature T, a molecule has an average kinetic energy of kB T, where kB is Boltzmann's constant. Room temperature is about 295 K.)

University Physics Volume 3
17th Edition
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:William Moebs, Jeff Sanny
Chapter7: Quantum Mechanics
Section: Chapter Questions
Problem 34P: If the uncertainty in the y -component of a proton's position is 2.0 pm, find the minimum...
icon
Related questions
Question

Q9M4

Q9M.1
Consider an oxygen (O₂) molecule in a bottle of air. Imagine that at a certain time, we locate the molecule along the x axis to
within an uncertainty of 0.1 nm.
(a) What is the minimum uncertainty in the molecule's x-velocity required by the Heisenberg Uncertainty Principle?
(b) How does this compare (roughly) to the magnitude of the molecule's average x-velocity due to its thermal motion at
room temperature?
(Hints: Avogadro's number of oxygen molecules has a mass of about 32 g. At an absolute temperature T, a molecule has an
average kinetic energy of kB T, where kB is Boltzmann's constant. Room temperature is about 295 K.)
Answer
(a) about 10 m/s
(b) Av << average thermal speed.
Transcribed Image Text:Q9M.1 Consider an oxygen (O₂) molecule in a bottle of air. Imagine that at a certain time, we locate the molecule along the x axis to within an uncertainty of 0.1 nm. (a) What is the minimum uncertainty in the molecule's x-velocity required by the Heisenberg Uncertainty Principle? (b) How does this compare (roughly) to the magnitude of the molecule's average x-velocity due to its thermal motion at room temperature? (Hints: Avogadro's number of oxygen molecules has a mass of about 32 g. At an absolute temperature T, a molecule has an average kinetic energy of kB T, where kB is Boltzmann's constant. Room temperature is about 295 K.) Answer (a) about 10 m/s (b) Av << average thermal speed.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Uncertainty Principle
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning