Consider the following reaction:2 NO(g) + 2 H2(g)--->N2(g) + 2 H2O(g)(a) The rate law for this reaction is first order in H2 andsecond order in NO. Write the rate law. (b) If the rateconstant for this reaction at 1000 K is 6.0 x 104 M-2 s-1,what is the reaction rate when [NO] = 0.035 M and[H2] = 0.015 M? (c) What is the reaction rate at 1000 Kwhen the concentration of NO is increased to 0.10 M,while the concentration of H2 is 0.010 M? (d) What is thereaction rate at 1000 K if [NO] is decreased to 0.010 M and[H2] is increased to 0.030 M?

Chemistry & Chemical Reactivity
10th Edition
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Chapter14: Chemical Kinetics: The Rates Of Chemical Reactions
Section: Chapter Questions
Problem 24PS: Hydrogen iodide decomposes when heated, forming H2(g) and I2(g). The rate law for this reaction is...
icon
Related questions
Question

Consider the following reaction:
2 NO(g) + 2 H2(g)--->N2(g) + 2 H2O(g)
(a) The rate law for this reaction is first order in H2 and
second order in NO. Write the rate law. (b) If the rate
constant for this reaction at 1000 K is 6.0 x 104 M-2 s-1,
what is the reaction rate when [NO] = 0.035 M and
[H2] = 0.015 M? (c) What is the reaction rate at 1000 K
when the concentration of NO is increased to 0.10 M,
while the concentration of H2 is 0.010 M? (d) What is the
reaction rate at 1000 K if [NO] is decreased to 0.010 M and
[H2] is increased to 0.030 M?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Rate Laws
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning