Consider two heat exchanger configurations: parallel-flow and counter-flow. For both configurations cooling water at a flow rate of 1.5 kg/s enters the heat exchanger at 30°C and exits at 45.1°C. This water cools unused engine oil at a flow rate of 1 kg/s from 95°C to 50°C. Both configurations have the same overall heat transfer coefficient of 9,000 W/m²/K. Determine the following: 1. What is the required heat transfer area for each configuration? 2. Give that both configurations have the same inlet and outlet temperatures, what is the basis of the different areas calculated in part a?

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.46P
icon
Related questions
Question
Consider two heat exchanger configurations: parallel-flow and counter-flow.
For both configurations cooling water at a flow rate of 1.5 kg/s enters the heat
exchanger at 30°C and exits at 45.1°C. This water cools unused engine oil at a
flow rate of 1 kg/s from 95°C to 50°C. Both configurations have the same
overall heat transfer coefficient of 9,000 W/m2/K.
Determine the following:
1. What is the required heat transfer area for each configuration?
2. Give that both configurations have the same inlet and outlet temperatures,
what is the basis of the different areas calculated in part a?
Transcribed Image Text:Consider two heat exchanger configurations: parallel-flow and counter-flow. For both configurations cooling water at a flow rate of 1.5 kg/s enters the heat exchanger at 30°C and exits at 45.1°C. This water cools unused engine oil at a flow rate of 1 kg/s from 95°C to 50°C. Both configurations have the same overall heat transfer coefficient of 9,000 W/m2/K. Determine the following: 1. What is the required heat transfer area for each configuration? 2. Give that both configurations have the same inlet and outlet temperatures, what is the basis of the different areas calculated in part a?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning