Decision tree Sarah Chang is the owner of a small electronics company. In six months, a proposal is due for an electronic timing system for the next Olympic Games. For several years, Chang’s company has been developing a new microprocessor, a critical component in a timing system that would be superior to any product currently on the market. However, progress in research and development has been slow, and Chang is unsure whether her staff can produce the microprocessor in time. If they succeed in developing the microprocessor (probability p1), there is an excellent chance (probability p2) that Chang’s company will win the $1 million Olympic contract. If they do not, there is a small chance (probability p3) that she will still be able to win the same contract with analternative but inferior timing system that has already been developed. If she continues the project, Chang must invest $200,000 in research and development. In addition, making a proposal (which she will decide whether to do after seeing whether the R&D is successful) requires developing a prototype timing system at an additional cost. This additional cost is $50,000 if R&D is successful (so that she can develop the new timing system), and it is $40,000 if R&D is unsuccessful (so that she needs to go with the older timing system). Finally, if Chang wins the contract, the finished product will cost an additional $150,000 to produce.     Develop a decision tree that can be used to solve Chang’s problem. You can assume in this part of the problem that she is using EMV (of her net profit) as a decision criterion. Build the tree so that she can enter any values for p1, p2, and p3 (in input cells) and automatically see her optimal EMV and optimal strategy from the tree. If p2 = 0.8 and p3 = 0.1, what value of p1 makes Chang indifferent between abandoning the project and going ahead with it? How much would Chang benefit if she knew for certain that the Olympic organization would guarantee her the contract? (This guarantee would be in force only if she were successful in developing the product.) Assume p1 = 0.4, p2 = 0.8, and p3 = 0.1 Suppose now that this is a relatively big project for Chang. Therefore, she decides to use expected utility as her criterion, with an exponential utility function. Using some trial and error, see which risk tolerance changes her initial decision from “go ahead” to “abandon” when p1 = 0.4, p2 = 0.8, and p3 = 0.1.     In your Excel document, Develop a decision tree using the most appropriate support tool as described in Part a. Calculate the value of p1 as described in Part b. Show calculations. Calculate the possible profit using the most appropriate support tool as described in Part c. Show calculations. Calculate risk tolerance as described in Part d. Show calculations.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Decision tree

Sarah Chang is the owner of a small electronics company. In six months, a proposal is due for an electronic timing system for the next Olympic Games. For several years, Chang’s company has been developing a new microprocessor, a critical component in a timing system that would be superior

to any product currently on the market. However, progress in research and development has been slow, and Chang is unsure whether her staff can produce the microprocessor in time. If they succeed in developing the microprocessor (probability p1), there is an excellent chance (probability p2)

that Chang’s company will win the $1 million Olympic contract. If they do not, there is a small chance (probability p3) that she will still be able to win the same contract with analternative but inferior timing system that has already been developed.

If she continues the project, Chang must invest $200,000 in research and development. In addition, making a proposal (which she will decide whether to do after seeing whether the R&D is successful) requires developing a prototype timing system at an additional cost. This additional cost is $50,000 if R&D is successful (so that she can develop the new timing system), and it is $40,000 if R&D is unsuccessful (so that she needs to go with the older timing system). Finally, if Chang wins the contract, the finished product will cost an additional $150,000 to produce.

 

 

  1. Develop a decision tree that can be used to solve Chang’s problem. You can assume in this part of the problem that she is using EMV (of her net profit) as a decision criterion. Build the tree so that she can enter any values for p1, p2, and p3 (in input cells) and automatically see her optimal EMV and optimal strategy from the tree.
  2. If p2 = 0.8 and p3 = 0.1, what value of p1 makes Chang indifferent between abandoning the project and going ahead with it?
  3. How much would Chang benefit if she knew for certain that the Olympic organization would guarantee her the contract? (This guarantee would be in force only if she were successful in developing the product.) Assume p1 = 0.4, p2 = 0.8, and p3 = 0.1
  4. Suppose now that this is a relatively big project for Chang. Therefore, she decides to use expected utility as her criterion, with an exponential utility function. Using some trial and error, see which risk tolerance changes her initial decision from “go ahead” to “abandon” when p1 = 0.4, p2 = 0.8, and p3 = 0.1.

 

 

In your Excel document,

  1. Develop a decision tree using the most appropriate support tool as described in Part a.
  2. Calculate the value of p1 as described in Part b. Show calculations.
  3. Calculate the possible profit using the most appropriate support tool as described in Part c. Show calculations.
  4. Calculate risk tolerance as described in Part d. Show calculations.

 

 

The answers and explanations can be placed in the same Excel document as the decision tree.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 12 images

Blurred answer
Knowledge Booster
Optimization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,