For an ideal monatomic gas, the following is true. (Use the following as necessary: T, U, and V.) T

Chemistry: Principles and Practice
3rd Edition
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Chapter5: Thermochemistry
Section: Chapter Questions
Problem 5.101QE: In the 1880s, Frederick Trouton noted that the enthalpy of vaporization of 1 mol pure liquid is...
icon
Related questions
Question
100%
Starting with the relation P = -(A/V), show that P = kBT(à In Q/V). Using argon as an example of an ideal monatomic gas, derive the ideal-gas equation (PV = nRT).
Step 1 of 7
Give the equation for the Helmholtz energy, A. (Use the following as necessary: S, T, and U.)
A = U-TS
U-TS
Give the equation for entropy that contains the canonical partition function, Q. (Use the following as necessary: E, KB, Q, and T.)
S =
kpln(Q) +
E
T
kB ln (Q) +
FR
Step 2 of 7
We only need to consider the translational
translational partition function for an ideal monatomic gas, so E = U - Uo.
Combine this equation with the equations for S and A from Step 1. (Use the following as necessary: KB, Q, T, U, and U₁.)
A = -Tkaln(Q) + U₁
0
U₁ - kBT ln(Q)
Step 3 of 7
Substitute the equation from Step 2 into the given equation for P and complete the partial derivative. (Use the following as necessary: KB, Q, T, U, and Up.)
P =
-(SA),
.
- (a In(@)); *
kpT
=
B
КВТ
Step 4 of 7
For an ideal monatomic gas, the following is true. (Use the following as necessary: T, U, and V.)
(3V) ₁ =
T
Transcribed Image Text:Starting with the relation P = -(A/V), show that P = kBT(à In Q/V). Using argon as an example of an ideal monatomic gas, derive the ideal-gas equation (PV = nRT). Step 1 of 7 Give the equation for the Helmholtz energy, A. (Use the following as necessary: S, T, and U.) A = U-TS U-TS Give the equation for entropy that contains the canonical partition function, Q. (Use the following as necessary: E, KB, Q, and T.) S = kpln(Q) + E T kB ln (Q) + FR Step 2 of 7 We only need to consider the translational translational partition function for an ideal monatomic gas, so E = U - Uo. Combine this equation with the equations for S and A from Step 1. (Use the following as necessary: KB, Q, T, U, and U₁.) A = -Tkaln(Q) + U₁ 0 U₁ - kBT ln(Q) Step 3 of 7 Substitute the equation from Step 2 into the given equation for P and complete the partial derivative. (Use the following as necessary: KB, Q, T, U, and Up.) P = -(SA), . - (a In(@)); * kpT = B КВТ Step 4 of 7 For an ideal monatomic gas, the following is true. (Use the following as necessary: T, U, and V.) (3V) ₁ = T
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning