Graphite, an allotrope of carbon, is converted into cubic diamond through a process that may take a billion years or longer. As illustrated above, scientists can make synthetic diamonds using a certain process in about one week. However, these synthetic diamonds have carbon atoms in a hexagonal lattice. Diamonds with a carbon atoms in a cubic lattice are not produced even though they are thermodynamically more stable than hexagonal diamond. Which of the following best justifies why the synthetic process produces hexagonal diamond and not the more thermodynamically stable cubic diamond? a. The amount of energy required to create new bonds between carbon atoms in cubic diamond is much greater than the amount of energy required to create hexagonal diamond. b. The amount of energy required to create new bonds between carbon atoms in cubic diamond is much smaller than the amount of energy required to create hexagonal diamond. c. The activation energy needed to form cubic diamond is much less than the activation energy needed to form hexagonal diamond. d. The activation energy needed to form cubic diamond is much greater than the activation energy needed to form hexagonal diamond.

Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter20: Chemistry Of Selected Transition Elements And Coordination Compounds
Section: Chapter Questions
Problem 60QRT
icon
Related questions
Question
Graphite, an allotrope of carbon, is converted into cubic diamond through a process that may take a billion years or longer. As illustrated above, scientists can make synthetic diamonds using a certain process in about one week. However, these synthetic diamonds have carbon atoms in a hexagonal lattice. Diamonds with a carbon atoms in a cubic lattice are not produced even though they are thermodynamically more stable than hexagonal diamond. Which of the following best justifies why the synthetic process produces hexagonal diamond and not the more thermodynamically stable cubic diamond? a. The amount of energy required to create new bonds between carbon atoms in cubic diamond is much greater than the amount of energy required to create hexagonal diamond. b. The amount of energy required to create new bonds between carbon atoms in cubic diamond is much smaller than the amount of energy required to create hexagonal diamond. c. The activation energy needed to form cubic diamond is much less than the activation energy needed to form hexagonal diamond. d. The activation energy needed to form cubic diamond is much greater than the activation energy needed to form hexagonal diamond.
Hexagonal
Cubic
Transcribed Image Text:Hexagonal Cubic
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Crystal Lattices and Unit Cells
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781285199023
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning