Hot gas enters a finned-tube, crossflow heat exchanger at 300 °C and exits at 100 °C. Assume that both fluids are unmixed. The gas is used to heat pressurized water flowing at 1 kg/s from 35 °C to 125 °C. Assume constant properties and use 1000 J/kg K and 4197 J/kg K as the specific heat of the gas and the water, respectively. The overall heat transfer coefficient, based on the gas-side surface area is U₁ = 100 W/m² K. Please determine the required gas side surface area (Aʼn), using the NTU method. Repeat the problem using the LMTD method. Compare your results by quantifying the difference between the two methods with a percent difference and write an observation/conclusion for this result.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.49P
icon
Related questions
Question
Hot gas enters a finned-tube, crossflow heat exchanger at 300 °C and exits at 100 °C. Assume
that both fluids are unmixed. The gas is used to heat pressurized water flowing at 1 kg/s from 35
°C to 125 °C. Assume constant properties and use 1000 J/kg K and 4197 J/kg K as the specific
heat of the gas and the water, respectively. The overall heat transfer coefficient, based on the
gas-side surface area is U₁ = 100 W/m² K. Please determine the required gas side surface area
(Aʼn), using the NTU method. Repeat the problem using the LMTD method. Compare your
results by quantifying the difference between the two methods with a percent difference and
write an observation/conclusion for this result.
Transcribed Image Text:Hot gas enters a finned-tube, crossflow heat exchanger at 300 °C and exits at 100 °C. Assume that both fluids are unmixed. The gas is used to heat pressurized water flowing at 1 kg/s from 35 °C to 125 °C. Assume constant properties and use 1000 J/kg K and 4197 J/kg K as the specific heat of the gas and the water, respectively. The overall heat transfer coefficient, based on the gas-side surface area is U₁ = 100 W/m² K. Please determine the required gas side surface area (Aʼn), using the NTU method. Repeat the problem using the LMTD method. Compare your results by quantifying the difference between the two methods with a percent difference and write an observation/conclusion for this result.
Expert Solution
steps

Step by step

Solved in 5 steps with 11 images

Blurred answer
Knowledge Booster
Heat Exchangers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning