In a mid-size company, the distribution of the number of phone calls answered each day by each of the 12 receptionists is bell-shaped and has a mean of 48 and a standard deviation of 8. Using the empirical rule, what is the approximate percentage of daily phone calls numbering between 24 and 72? Do not enter the percent symbol. ans = %

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
In a mid-size company, the distribution of the number of phone calls answered each day by each of the 12
receptionists is bell-shaped and has a mean of 48 and a standard deviation of 8. Using the empirical rule,
what is the approximate percentage of daily phone calls numbering between 24 and 72?
Do not enter the percent symbol.
ans =
Transcribed Image Text:In a mid-size company, the distribution of the number of phone calls answered each day by each of the 12 receptionists is bell-shaped and has a mean of 48 and a standard deviation of 8. Using the empirical rule, what is the approximate percentage of daily phone calls numbering between 24 and 72? Do not enter the percent symbol. ans =
Expert Solution
Step 1
  • Empirical Rule : 

The Empirical Rule states that the area under the normal distribution that is within one standard deviation of the mean is approximately 0.68, the area within two standard deviations of the mean is approximately 0.95, and the area within three standard deviations of the mean is approximately 0.997.

In other words , 

The empirical rule, also referred to as the three-sigma rule or 68-95-99.7 rule, is a statistical rule which states that for a normal distribution, almost all observed data will fall within three standard deviations (denoted by σ) of the mean or average (denoted by µ). 

In particular, the empirical rule predicts that 68% of observations falls within the first standard deviation (µ ± σ), 95% within the first two standard deviations (µ ± 2σ), and 99.7% within the first three standard deviations (µ ± 3σ).  

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman