It is well known that runners run more slowly around a curved track than a straight one. One hypothesis to explain this is that the total force from the track on a runner's feet--the magnitude of the vector sum of the normal force (that has average value mgmg to counteract gravity) and the inward-directed friction force that causes the runner's centripetal acceleration--is greater when running around a curve than on a straight track. Runners compensate for this greater force by increasing the time their feet are in contact with the ground, which slows them down. For sprinters running at 8 m/s around a curved track of radius 16 m, how much greater (as a percentage) is the average total force on their feet compared to when they are running in a straight line?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter5: More Applications Of Newton’s Laws
Section: Chapter Questions
Problem 41P
icon
Related questions
Question

It is well known that runners run more slowly around a curved track than a straight one. One hypothesis to explain this is that the total force from the track on a runner's feet--the magnitude of the vector sum of the normal force (that has average value mgmg to counteract gravity) and the inward-directed friction force that causes the runner's centripetal acceleration--is greater when running around a curve than on a straight track. Runners compensate for this greater force by increasing the time their feet are in contact with the ground, which slows them down.

For sprinters running at 8 m/s around a curved track of radius 16 m, how much greater (as a percentage) is the average total force on their feet compared to when they are running in a straight line?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Centripetal force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning