Question
Let D be a domain and l be a closed line segment lying in D. In ele-
mentary topology it is shown that l can be covered by a finite numbeir
of open disks that lie in D and have their centers on l. Use this fact to
prove that any two points of a domain D can be joined by a polygonal
path in D having all its segments parallel to the coordinate axes.
expand button
Transcribed Image Text:Let D be a domain and l be a closed line segment lying in D. In ele- mentary topology it is shown that l can be covered by a finite numbeir of open disks that lie in D and have their centers on l. Use this fact to prove that any two points of a domain D can be joined by a polygonal path in D having all its segments parallel to the coordinate axes.
Expert Solution

Want to see the full answer?

Check out a sample Q&A here
Blurred answer
Students who’ve seen this question also like:
Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Not helpful? See similar books
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Second-order Linear Odes. 1RQ
marketing sidebar icon
Want to see this answer and more?
Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*
*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.

Related Advanced Math Q&A

Find answers to questions asked by students like you.

Q: 4) Determine whether or not each of the following subset of R with the euclidean topology is…

A: Click to see the answer

Q: 7. Let ABCD be a parallelogram in the affine plane. Prove that the line connecting the midpoints of…

A: Given that, Let ABCD be a parallelogram in the affine plane. Prove that the line connecting the…

Q: Show that the set of all real numbers constitutes an incomplete metric space if we choose d(x, y) =…

A: Since you have asked multiple question, we will solve the first question for you. If you want any…

Q: If X = {a,b, c}, let T1 = {0, X, {a}, {a,b}} and T2 = {0, X, {a}, {b, c}} . Find the smallest…

A: Click to see the answer

Q: If X = {a,b, c}, let T1 = {0, X, {a}, {a,b}} and T2 = {0, X, {a}, {b, c}} . Find the smallest…

A: Click to see the answer

Q: If X = {a,b, c}, let T1 = {0, X, {a}, {a,b}} and T2 = {0, X, {a}, {b, c}} . Find the smallest…

A: Click to see the answer

Q: Prove that if  v0 and v1  are distinct vertices of a graph  G  = (V,E) and a path exists in G from…

A: Let v0 and v1 be distinct vertices of a graph G=V,E. Assume that there exists path in G from v0 to…

Q: Prove that if  v0 and v1  are distinct vertices of a graph  G  = (V,E) and a path exists in G from…

A: Click to see the answer

Q: Prove that if  v0 and v1  are distinct vertices of a graph  G  = (V,E) and a path exists in G from…

A: Click to see the answer

Q: Suppose that l is a line. Let H be one of the two half-planes bounded by l. Give a proof that l U H…

A: Answer is mentioned below

Q: Find the transitive closure of R if MR is

A: Click to see the answer

Q: Consider the following subsets of R equipped with the Euclidean topology: A = { neN} Зп — 1 n+1 ° B…

A: Click to see the answer

Q: * Let R be with the co-finite topology. If A = {1,3,5, 7,..}, then Aº R O Q O A O N O

A: Click to see the answer

Q: 1. Prove that given a line € and a point P not on e, there exists a line through P perpendicular to…

A: Explanation of the answer is as follows

Q: Recall that Rℓ denotes the Sorgenfrey line; that is, the set of real numbers with the topology…

A: Click to see the answer

Q: Suppose that R (the set of real numbers) is equipped by TO (the Euclidean topology), T1 (the…

A: Click to see the answer

Q: Find a Hamilton path that begins at F and ends at E whose second vertex is A. 图 E G D в ..... GEBCF…

A: Click to see the answer

Q: Let lx, T) be a topological Space and A, B S X- if A is open, then show that An CIIB) s CLLANB). if…

A: Given X, τ be a topological space and A, B⊆X. Suppose, A is open then An arbitrary x∈A∩clB implies…

Q: 3. Find a minimally invariant set in (C, R) that contains the circle 2- (1+ 21)| = 4.

A: Click to see the answer

Q: 3. Find a minimally invariant set in (C, R) that contains the circle [2 -(1+21)| = 4.

A: It is given that z-1+2i=4. Note that, z=x+iy. Substitute z=x+iy in z-1+2i=4:…

Q: Suppose that R (the set of real numbers) is equipped by TO (the Euclidean topology), T1 (the…

A: in the given question we have to tell about the open interval (a,b) s.t (a,b) is either open or not…

Q: 4) Determine whether or not each of the following subset of R with the euclidean topology is…

A: Since you have asked multiple question, we will solve the first question for you. If youwant any…

Q: Let (X, T) be a topological space, AcX, then A'next (A) = 10 AO

A: Click to see the answer

Q: 4) Determine whether or not each of the following subset of R with the euclidean topology is…

A: Click to see the answer

Q: Consider the closed curve C, which is th

A: Given, the closed curve C, which is the image of the path…

Q: Suppose that R (the set of real numbers) is equipped by TO (the Euclidean topology), T1 (the…

A: Thanks for the question :)And your upvote will be really appreciable ;)

Q: Let x1 and x2 be distinct points in the metric space (S, d). Verify that there are open balls S,…

A: Click to see the answer

Q: Find the set of ordered pairs (T0, Yo) for which Picard's Theorem guarantees that the IVP y ry %3D y…

A: Given,            y'=xyx+y, y(x0)=y0

Q: Every point in space is colored red, green, or blue. Prove or disprove that there exists a…

A: Given that every point in space is colored red, green or blue.  Using pigeon hole principle let's…

Q: Let G be a DAG with exactly one source r and such that for any vertex v there exists a unique…

A: Given G is a directed acyclic graph (DAG).It is also given that G has exactly one source r and for…

Q: Let G be a DAG with exactly one source r and such that for any vertex v there exists a unique…

A: Given: G is a DAG(direct Acylic Graph) with exactly once source r. There exist a unique path from r…

Q: 3. Let C be the positively oriented circle |2| = 2. Compute the following integral: 726+3 exp(5)…

A: Click to see the answer

Q: as:a Proue that the Centre of a gp îs nomal.

A: The set Z of all those elements of a group G which commute with every element of G is called the…

Q: Let (X,τ) is a topological space and A ⊆ X. If all subsets of A are closed in X, then set A cannot…

A: Given that X,τ is a topological space. Let's prove this theorem by contradiction. So  X,τ is a…

Q: Let (X7) be a topological Space and Show that A is open and closed m (xx) iff %3D

A: Click to see the answer

Q: Which of the following statements are correct? " i. Existence of an Euler path imply that an Euler…

A: Euler tour is Euler path which is start and ends on the same vertex

Q: 3. Prove that the image of a measurable set E under the translation 4 is measurable and m(E+a)…

A: Click to see the answer

Q: Suppose metric space X is not path-wise connected then X is not connected. O True O False

A: Question 9 Answer: as a path connected space of employees connected but converse is not true. So I…

Q: Suppose metric space X is not path-wise connected then X is not connected. O True O False

A: Click to see the answer

Q: Show without using the Heine-Borel theorem that the line R is not a compact set in R ^ 2

A: The proof is done using the definition of compact set. A set S is said to be compact if and only if…

Q: Prove that in a metric space (X, d) every closed ball that is a set K(x, r) = {y e X : d(x, y) <=…

A: Question: Prove that in a metric space X, d every closed ball K¯x, r=y∈X, dx, y≤r is a closed set.…

Knowledge Booster
Recommended textbooks for you
  • Advanced Engineering Mathematics
    Advanced Math
    ISBN:9780470458365
    Author:Erwin Kreyszig
    Publisher:Wiley, John & Sons, Incorporated
    Numerical Methods for Engineers
    Advanced Math
    ISBN:9780073397924
    Author:Steven C. Chapra Dr., Raymond P. Canale
    Publisher:McGraw-Hill Education
    Introductory Mathematics for Engineering Applicat...
    Advanced Math
    ISBN:9781118141809
    Author:Nathan Klingbeil
    Publisher:WILEY
  • Mathematics For Machine Technology
    Advanced Math
    ISBN:9781337798310
    Author:Peterson, John.
    Publisher:Cengage Learning,
    Basic Technical Mathematics
    Advanced Math
    ISBN:9780134437705
    Author:Washington
    Publisher:PEARSON
    Topology
    Advanced Math
    ISBN:9780134689517
    Author:Munkres, James R.
    Publisher:Pearson,
  • Advanced Engineering Mathematics
    Advanced Math
    ISBN:9780470458365
    Author:Erwin Kreyszig
    Publisher:Wiley, John & Sons, Incorporated
    Numerical Methods for Engineers
    Advanced Math
    ISBN:9780073397924
    Author:Steven C. Chapra Dr., Raymond P. Canale
    Publisher:McGraw-Hill Education
    Introductory Mathematics for Engineering Applicat...
    Advanced Math
    ISBN:9781118141809
    Author:Nathan Klingbeil
    Publisher:WILEY
    Mathematics For Machine Technology
    Advanced Math
    ISBN:9781337798310
    Author:Peterson, John.
    Publisher:Cengage Learning,
    Basic Technical Mathematics
    Advanced Math
    ISBN:9780134437705
    Author:Washington
    Publisher:PEARSON
    Topology
    Advanced Math
    ISBN:9780134689517
    Author:Munkres, James R.
    Publisher:Pearson,