Liquid ammonia is transported from a production plant to a processing center via a 0.6-m diameter pipeline at a mass flow rate of 0.15 kg/s. Surface temperature of the pipe is maintained 0°C by using a cooling jacket with ice-cold water. Ammonia enters the pipeline at -17°C and exits at -3°C. Assume the flow is both hydrodynamically and thermally fully developed in the pipe. What is the length of the pipe? 1857m

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.3P
icon
Related questions
Question
Liquid ammonia is transported from a production plant to a processing center via a 0.6-m diameter pipeline
at a mass flow rate of 0.15 kg/s. Surface temperature of the pipe is maintained 0°C by using a cooling jacket
with ice-cold water. Ammonia enters the pipeline at -17°C and exits at -3°C. Assume the flow is both
hydrodynamically and thermally fully developed in the pipe. What is the length of the pipe?
185.7m
Transcribed Image Text:Liquid ammonia is transported from a production plant to a processing center via a 0.6-m diameter pipeline at a mass flow rate of 0.15 kg/s. Surface temperature of the pipe is maintained 0°C by using a cooling jacket with ice-cold water. Ammonia enters the pipeline at -17°C and exits at -3°C. Assume the flow is both hydrodynamically and thermally fully developed in the pipe. What is the length of the pipe? 185.7m
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning