ly correlated with both independent variables and the dependent variable, (2) a variable highly correlated with the dependent variable but not correlated with either independent variable, and (3) a variable not correlated with either of the independent variables or with the dependent variable. Which of the three variables is likely to make the multiple regression equation better? That is, which is likely to increase the proportionate reduction in error?

College Algebra
7th Edition
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:James Stewart, Lothar Redlin, Saleem Watson
Chapter1: Equations And Graphs
Section: Chapter Questions
Problem 10T: Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s...
icon
Related questions
Question

Let’s say you want to add a fourth independent variable. You have to choose among three possible independent variables: (1) a variable highly correlated with both independent variables and the dependent variable, (2) a variable highly correlated with the dependent variable but not correlated with either independent variable, and (3) a variable not correlated with either of the independent variables or with the dependent variable. Which of the three variables is likely to make the multiple regression equation better? That is, which is likely to increase the proportionate reduction in error? 

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt