Problem 4: A loop of wire with radius r0.045 m is in a magnetic field with magnitude B as shown in the figure. B changes from B,-0.45 T to B,-7.5 T inAt = 2.5 s at a constant rate. The resistance of the wire is R 8 Ω Randomized Variables r0.045 m B,-0.45T B2=7.5 T At- 2.5 s R=862 Part (a_Express the magnetic flux cp going through a loop of radius r assuming a constam magnetic field B. HOME 4 5 6 BACKSPACE CLEAR Submit Hint I give up! Hints: 1% deduction per hint. Hints remaining: 1 Feedback: 1% deduction per feedback Part (b) Express the magnetic flux change, Ф, in terms of B1, B2 and r. Part (c) Calculate the numerical value ofΔΦ in T.m Part (d) Express the magnitude of the average emf, ε, induced in the loop in terms of ΔΦ and Δ ▲ Part (e) Calculate the numerical value of the emf in V Part (f) Express the current induced in the loop, I, in terms ofe and kR

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter30: Magnetic Fields And Forces
Section: Chapter Questions
Problem 75PQ
icon
Related questions
Question
Problem 4: A loop of wire with radius r0.045 m is in a magnetic field with
magnitude B as shown in the figure. B changes from B,-0.45 T to B,-7.5 T inAt = 2.5 s
at a constant rate. The resistance of the wire is R 8 Ω
Randomized Variables
r0.045 m
B,-0.45T
B2=7.5 T
At- 2.5 s
R=862
Part (a_Express the magnetic flux cp going through a loop of radius r assuming a
constam magnetic field B.
HOME
4 5 6
BACKSPACE
CLEAR
Submit
Hint
I give up!
Hints: 1% deduction per hint. Hints remaining: 1
Feedback: 1% deduction per feedback
Part (b) Express the magnetic flux change, Ф, in terms of B1, B2 and r.
Part (c) Calculate the numerical value ofΔΦ in T.m
Part (d) Express the magnitude of the average emf, ε, induced in the loop in terms
of ΔΦ and Δ
▲ Part (e) Calculate the numerical value of the emf in V
Part (f) Express the current induced in the loop, I, in terms ofe and kR
Transcribed Image Text:Problem 4: A loop of wire with radius r0.045 m is in a magnetic field with magnitude B as shown in the figure. B changes from B,-0.45 T to B,-7.5 T inAt = 2.5 s at a constant rate. The resistance of the wire is R 8 Ω Randomized Variables r0.045 m B,-0.45T B2=7.5 T At- 2.5 s R=862 Part (a_Express the magnetic flux cp going through a loop of radius r assuming a constam magnetic field B. HOME 4 5 6 BACKSPACE CLEAR Submit Hint I give up! Hints: 1% deduction per hint. Hints remaining: 1 Feedback: 1% deduction per feedback Part (b) Express the magnetic flux change, Ф, in terms of B1, B2 and r. Part (c) Calculate the numerical value ofΔΦ in T.m Part (d) Express the magnitude of the average emf, ε, induced in the loop in terms of ΔΦ and Δ ▲ Part (e) Calculate the numerical value of the emf in V Part (f) Express the current induced in the loop, I, in terms ofe and kR
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 6 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning