Recall: work done equals change in kinetic energy 4. 4) On a frictionless surface, a block with mass M1 =0.50 kg moving at 4 m/s to the right collides with a mass M2= 0.20kg block moving to the left at 2m/s. The bodies move along the x-axis only. a) If the two blocks stick together after the collision, what is the final velocity (magnitude and direction? b) How much mechanical energy is lost? c) If the collision lasts for 30ms, find the average force. 5. A 72-kg athlete starts from rest and then sprints on a level track, reaching a final speed of 6.3m/s after 12 seconds. a) Calculate the work done. b) What was her average mechanical power? 6. A spring exerts a force of 100 N when compressed 0.15m. a) Determine the spring constant and calculate how much potential energy is stored in the spring, if it is now compressed 0.20 m? b) The spring compressed 0.20m, is used to launch a 0.6 kg ball horizontally. What is the maximum speed with which the ball can be launched?

Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter9: Momentum And Its Conservation
Section: Chapter Questions
Problem 70A
icon
Related questions
Question

Can you please answer number 6 and show all of the steps 

Please answer in less than 10 minutes 

Recall: work done equals change in kinetic energy
4. 4) On a frictionless surface, a block with mass M1 =0.50 kg moving at 4 m/s to
the right collides with a mass M2= 0.20kg block moving to the left at 2m/s.
The bodies move along the x-axis only.
a) If the two blocks stick together after the collision, what is the final velocity
(magnitude and direction?
b) How much mechanical energy is lost?
c) If the collision lasts for 30ms, find the average force.
5. A 72-kg athlete starts from rest and then sprints on a level track, reaching a
final speed of 6.3m/s after 12 seconds.
a) Calculate the work done. b) What was her average mechanical power?
6. A spring exerts a force of 100 N when compressed 0.15m.
a) Determine the spring constant and calculate how much potential energy is
stored in the spring, if it is now compressed 0.20 m?
b) The spring compressed 0.20m, is used to launch a 0.6 kg ball horizontally.
What is the maximum speed with which the ball can be launched?
Transcribed Image Text:Recall: work done equals change in kinetic energy 4. 4) On a frictionless surface, a block with mass M1 =0.50 kg moving at 4 m/s to the right collides with a mass M2= 0.20kg block moving to the left at 2m/s. The bodies move along the x-axis only. a) If the two blocks stick together after the collision, what is the final velocity (magnitude and direction? b) How much mechanical energy is lost? c) If the collision lasts for 30ms, find the average force. 5. A 72-kg athlete starts from rest and then sprints on a level track, reaching a final speed of 6.3m/s after 12 seconds. a) Calculate the work done. b) What was her average mechanical power? 6. A spring exerts a force of 100 N when compressed 0.15m. a) Determine the spring constant and calculate how much potential energy is stored in the spring, if it is now compressed 0.20 m? b) The spring compressed 0.20m, is used to launch a 0.6 kg ball horizontally. What is the maximum speed with which the ball can be launched?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Unit conversion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning