Some rocks or bricks contain small air pockets in them and have a spongy structure. Assuming the air spaces form columns of an average diameter of 5 µm, determine how high water can rise in such a material. Take the surface tension of the air-water interface in that material to be 0.085 N/m. The capillary rise in such a material is m.

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter8: Centroids And Distributed Loads
Section: Chapter Questions
Problem 8.122P: The 12-ft wide quarter-circular gate AB is hinged at A. Determine the contact force between the gate...
icon
Related questions
Topic Video
Question
Some rocks or bricks contain small air pockets in them and have a spongy structure. Assuming the air spaces form columns of an
average diameter of 5 µm, determine how high water can rise in such a material. Take the surface tension of the air-water interface in
that material to be 0.085 N/m.
The capillary rise in such a material is
m.
Transcribed Image Text:Some rocks or bricks contain small air pockets in them and have a spongy structure. Assuming the air spaces form columns of an average diameter of 5 µm, determine how high water can rise in such a material. Take the surface tension of the air-water interface in that material to be 0.085 N/m. The capillary rise in such a material is m.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L