Steam condenses at 100°C on the outer surface of a pipe with a thermal conductivity of 180 J/ms°C. The surface heat transfer coefficient of the water flowing in the pipe is 4000 J/m²s°C, and the heat transfer coefficient created by the steam condensing outside is 10000 J/m²s°C. The length of the pipe is 5 m and the thread diameter is 25 mm. Since the pipe thickness is 1 mm, calculate the total heat transfer coefficient and the rate of heat transfer from the condensed steam to the water at 15 °

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.4P
icon
Related questions
Question

Steam condenses at 100°C on the outer surface of a pipe with a thermal conductivity of 180 J/ms°C. The surface heat transfer coefficient of the water flowing in the pipe is 4000 J/m²s°C, and the heat transfer coefficient created by the steam condensing outside is 10000 J/m²s°C. The length of the pipe is 5 m and the thread diameter is 25 mm. Since the pipe thickness is 1 mm, calculate the total heat transfer coefficient and the rate of heat transfer from the condensed steam to the water at 15 °C

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning