The following vibration system oscillates with a small angle. x = 0.6m, y = 1.8m, k = 18N/m. From the motor: static deflection = 0.2m, forcing frequency = 30 rad/s. If the starting angle from rest is 2 radians (counter-clockwise) and mass A is 10 kilograms, determine: 1. The natural frequency in radians per second. 2. The natural period in second 3. The amplitude of free vibration in meters (reference: neutral position of the spring below), 4. The amplitude of steady-state vibration in meters (reference: neutral position of the spring below) 5. The magnification factor

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

The following vibration system oscillates with a small angle. x = 0.6m, y = 1.8m, k = 18N/m. From the motor: static deflection = 0.2m, forcing frequency = 30 rad/s. If the starting angle from rest is 2 radians (counter-clockwise) and mass A is 10 kilograms, determine:

1. The natural frequency in radians per second.

2. The natural period in second

3. The amplitude of free vibration in meters (reference: neutral position of the spring below),

4. The amplitude of steady-state vibration in meters (reference: neutral position of the spring below)

5. The magnification factor

6. The overall displacement in meters when t= 1 second (reference: neutral position of the spring below).

k
B
Transcribed Image Text:k B
Expert Solution
steps

Step by step

Solved in 7 steps

Blurred answer
Knowledge Booster
Free Undamped Vibrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY