The maximum rate I at which oxygen molecules can be consumed by a bacterium or radius R in a lake where the concentration of oxygen is co = 0.2 mole m-³ increases with the first power of R. We might expect the oxygen consumption, however, to increase roughly with an organism's volume. Together, this statements imply an upper limit to the size of a bacterium: If R gets too large, the bacterium would literally suffocate. The actual metabolic activity of a bacterium is about 0.02 mole kg' s'. What limit do you then get on the size R of a bacterium? Compare to the size of a real bacteria. Can you think of some way for a bacterium to evade this limit?

Chemistry for Engineering Students
4th Edition
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Lawrence S. Brown, Tom Holme
Chapter11: Chemical Kinetics
Section: Chapter Questions
Problem 11.91PAE
icon
Related questions
Question
1
The maximum rate I at which oxygen molecules can be consumed by a bacterium or
radius R in a lake where the concentration of oxygen is co = 0.2 mole m³ increases
with the first power of R. We might expect the oxygen consumption, however, to
increase roughly with an organism's volume. Together, this statements imply an upper
limit to the size of a bacterium: If R gets too large, the bacterium would literally
suffocate. The actual metabolic activity of a bacterium is about 0.02 mole kg-' sl.
What limit do you then get on the size R of a bacterium? Compare to the size of a real
bacteria. Can you think of some way for a bacterium to evade this limit?
Transcribed Image Text:The maximum rate I at which oxygen molecules can be consumed by a bacterium or radius R in a lake where the concentration of oxygen is co = 0.2 mole m³ increases with the first power of R. We might expect the oxygen consumption, however, to increase roughly with an organism's volume. Together, this statements imply an upper limit to the size of a bacterium: If R gets too large, the bacterium would literally suffocate. The actual metabolic activity of a bacterium is about 0.02 mole kg-' sl. What limit do you then get on the size R of a bacterium? Compare to the size of a real bacteria. Can you think of some way for a bacterium to evade this limit?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Chemical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning