The position of a particle moving along an x axis is given by x = 13.0t2 - 6.00t3, where x is in meters and t is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at t = 4.00 s.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter2: Motion In One Dimension
Section: Chapter Questions
Problem 6P: The position of a particle moving along the x axis varies in time according to the expression x =...
icon
Related questions
icon
Concept explainers
Topic Video
Question

The position of a particle moving along an x axis is given by x = 13.0t2 - 6.00t3, where x is in meters and t is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at t = 4.00 s. (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle and (g) at what time is it reached? (h) What is the acceleration of the particle at the instant the particle is not moving (other than at t = 0)? (i) Determine the average velocity of the particle between t = 0 and t = 4.00 s

Expert Solution
Step 1

Hello. Since your question has multiple sub-parts, we will solve first three sub-parts for you. If you want remaining sub-parts to be solved, then please resubmit the whole question and specify those sub-parts you want us to solve.

Answer:

a)

At t = 4.00 s, the position of the particle is calculated in the following way.

Physics homework question answer, step 1, image 1

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Knowledge Booster
Displacement, velocity and acceleration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning