Two crates, one with mass 4.00 kg and the other with mass 6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light rope (Fig. P4.37). A woman wearing golf shoes (for traction) pulls horizontally on the 6.00 kg crate with a force F that gives the crate an acceleration of 2.50 m/s2. (a) What is the acceleration of the 4.00 kg crate? (b) Draw a free-body diagram for the 4.00 kg crate. Use that diagram and Newton's second law to find the tension T in the rope that connects the two crates. (c) Draw a free-body diagram for the 6.00 kg crate. What is the direction of the net force on the 6.00 kg crate? Which is larger in magnitude, T or F? (d) Use part (c) and Newton's second law to calculate the magnitude of F. Figure P4.37 4.00 kg 6.00 kg F

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter4: The Laws Of Motion
Section: Chapter Questions
Problem 53P: Review. A block of mass m = 2.00 kg is released from rest at h = 0.500 m above the surface of a...
icon
Related questions
Question
Problem set 2
Two crates, one with mass 4.00 kg and the other with mass 6.00 kg, sit on the frictionless surface
of a frozen pond, connected by a light rope (Fig. P4.37). A woman wearing golf shoes (for traction)
pulls horizontally on the 6.00 kg crate with a force F that gives the crate an acceleration of 2.50
m/s2. (a) What is the acceleration of the 4.00 kg crate? (b) Draw a free-body diagram for the 4.00 kg
crate. Use that diagram and Newton's second law to find the tension T in the rope that connects
the two crates. (c) Draw a free-body diagram for the 6.00 kg crate. What is the direction of the net
force on the 6.00 kg crate? Which is larger in magnitude, T or F? (d) Use part (c) and Newton's
second law to calculate the magnitude of F.
Figure P4.37
4.00 kg
6.00 kg
Transcribed Image Text:Problem set 2 Two crates, one with mass 4.00 kg and the other with mass 6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light rope (Fig. P4.37). A woman wearing golf shoes (for traction) pulls horizontally on the 6.00 kg crate with a force F that gives the crate an acceleration of 2.50 m/s2. (a) What is the acceleration of the 4.00 kg crate? (b) Draw a free-body diagram for the 4.00 kg crate. Use that diagram and Newton's second law to find the tension T in the rope that connects the two crates. (c) Draw a free-body diagram for the 6.00 kg crate. What is the direction of the net force on the 6.00 kg crate? Which is larger in magnitude, T or F? (d) Use part (c) and Newton's second law to calculate the magnitude of F. Figure P4.37 4.00 kg 6.00 kg
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Free body diagram
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University