Using net ionic equations and solution stoichiometry, calculate the molarity of the principal substances (ions and/or molecules) in solution, or the number of millimoles of insoluble species (solids or gases) present after the following are mixed:  YOU MUST USE A TABLE FORMAT AS SHOWN ON THE EXAMPLE PROBLEMS. ) 100.mL of 0.200 M NH4OH and 100. mL of 0.200 M H2SO4

Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter3: Chemical Reactions
Section3.11: Stoichiometry In Aqueous Solutions
Problem 3.28E: Sodium chloride is used in intravenous solutions for medical applications. The NaCl concentration in...
icon
Related questions
Question

EXAMPLES

Using net ionic equations and solution stoichiometry, calculate the molarity of the principal substances (ions and/or molecules) in solution, or the number of millimoles of insoluble species (solids or gases) present after the following are mixed:  

  1. 200.mL of 0.100 M NaOH and 150. mL of 0.200 M HCl.

Method:

a.) Calculate the millimoles of each ionic or molecular species initially present before mixing.

NaOH completely dissociates to give Na+ and OH- ions so:

200.mL soln x 0.100 mol Na+ (& OH-) = 20.0 mmol Na+ & 20.0 mmol OH-

                                               L soln                           initially present before mixing

               HCl is also 100% ionized so:

150.mL soln x 0.200 mol H+ (& Cl-) =  30.0 mmol H+  &  30.0 mmol Cl-

                                              L soln                            initially present before mixing

b.) Write the net ionic equation(s) for any reaction(s) occurring between the above species when the solutions are mixed: H+  +   OH-    ------->   HOH

c.) Now consider the stoichiometry. The limiting reactant is

OH-.   20.0 mmol of OH- will react with 20.0 mmol of H+:   20.0 mmol OH-   x   1 mmol H+    =   20.0 mmol H+(reacted)                                                                                                             1 mmol OH-    

Since 30.0 mmol of H+ was present initially, this leaves 10.0 mmol of H+ remaining after the reaction is complete:

      30.0 mmol H+(initially present) – 20.0 mmol H+(reacting) = 10.0 mmol H+(remains)

d.) Calculate the molarity of each species present after reaction. Assume the final volume after mixing is 350. mL (200. mL  +  150. mL). 

      10.0 mmol H+/350. mL =  0.0286 mol H+/L = 0.0286 M H+

      20.0 mmol Na+/350. mL = 0.0571 mol Na+/L = 0.0571 M Na+   

      30.0 mmol Cl-/350. mL = 0.0857 mol Cl-/L = 0.0857 M Cl-     

 

A convenient way to solve this kind of problem is by using a table to summarize the information calculated above:

 

Na+

OH-

H+

Cl-

    H2O

Initial mmol

   20.0

   20.0

   30.0

   30.0

     N/A

Change mmol

     0.0

 - 20.0

  -20.0

     0.0

  +20.0

Final mmol

   20.0

     0.0

   10.0

   30.0

     N/A

Final Molarity

     0.0571

     0.0

     0.0286

     0.0857

     N/A

  

2.) 300.mL of 0.150 M KOH and 700. mL of H2O:

Net Ionic Equation:  No chemical reaction take place.  Only dilution occurs.

 

    K+

    OH- 

Initial mmol

  45.0

    45.0

Change mmol

    0.0

      0.0

Final mmol

  45.0

    45.0

Final Molarity

    0.0450

      0.0450

3.) 500.mL of 0.250 M HC2H3O2 and 300. mL of 0.100 M Ba(OH)2:

Net Ionic Equation:      HC2H3O2    +    O H-  ------->      C2H3O2-   +   H2

 

HC2H3O2

    Ba2+

  OH- 

C2H3O2-

    H2O

Initial mmol

125

   30.0

   60.0

      0

     N/A

Change mmol

 -60.0

     0.0

  -60.0

  +60.0

  +60.0

Final mmol

  65

   30.0

     0.0

    60.0

     N/A

Final Molarity

    0.081

     0.0375

     0.0

      0.0750

     N/A

(no molarity is calculated for H2O because it is the solvent)

4.) 50.0 mL of 0.100 M Ba(OH)2 and 75.0 mL of 0.200 M H2SO4:

       Net Ionic Equation:   Two reactions occur

                           First:        H+    +    OH-  ------->   H2O

                           Second:      Ba2+   +   SO42-  ------>   BaSO4(s)

 

   Ba2+

    OH-

    H+

  SO42-

BaSO4

  H2O

Initial mmol

 5.00

 10.0

 30.0

15.0

   0

   N/A

Change mmol

-5.00

-10.0

-10.0

 -5.00

+5.00

+10.0

Final mmol

 0.00

   0.0

 20.0

10.0

  5.00

   N/A

Final Molarity

 0.00

   0.0           

   0.160

  0.0800

  N/A

   N/A

(no molarity is calculated for BaSO4 because it is a solid and therefore not in solution)

Using net ionic equations and solution stoichiometry, calculate the molarity of the principal substances (ions and/or molecules) in solution, or the number of millimoles of insoluble species (solids or gases) present after the following are mixed:  YOU MUST USE A TABLE FORMAT AS SHOWN ON THE EXAMPLE PROBLEMS.

  1. ) 100.mL of 0.200 M NH4OH and 100. mL of 0.200 M H2SO4
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Acid-Base Titrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Introductory Chemistry For Today
Introductory Chemistry For Today
Chemistry
ISBN:
9781285644561
Author:
Seager
Publisher:
Cengage
Introductory Chemistry: An Active Learning Approa…
Introductory Chemistry: An Active Learning Approa…
Chemistry
ISBN:
9781305079250
Author:
Mark S. Cracolice, Ed Peters
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781285199030
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning