Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables.  b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation! show all steps please

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.15P
icon
Related questions
Question
  1.  Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s.

Determine:

a.Density of the inlet stream using NIST tables. 

b.Mass flow rate [kg/s]

c.Determine h2 from known p2 and T2 using NIST tables

d.Find heat rate removed from Q=m(h1-h2)

  • Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation!

show all steps please

Expert Solution
steps

Step by step

Solved in 1 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning