You are imaging a pencil through a thin, converging lens as shown in the image below. If p (the distance from the object to the center of the thin lens) is 8.15m and the focal length of the thin lens is 0.42m, how far away (in meters) from the center of the thin lens is the real image located (the real image will be on the right-side of the lens in this particular example illustrated below)? Object Ray I Secondary focal point Converging lens Ray 2 Ray 3 Ray 1 Ray 3 Principal focal point Real image

University Physics Volume 3
17th Edition
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:William Moebs, Jeff Sanny
Chapter2: Geometric Optics And Image Formation
Section: Chapter Questions
Problem 64P: Two convex lenses of focal lengths 20 cm and 10 cm are placed 30 cm apart, with the lens with the...
icon
Related questions
icon
Concept explainers
Question
You are imaging a pencil through a thin, converging lens as shown in the image below. If p (the distance from the object to the center of the thin lens) is 8.15m and the focal length of the thin lens is 0.42m, how far away (in meters) from the center of the thin
lens is the real image located (the real image will be on the right-side of the lens in this particular example illustrated below)?
Ray 1
Ray 1 focal point
Ray 2
Sis
Secondary Ray 3
Ray 3
Object
Converging
lens
focal point
Principal
Real
image
Note: Do not explicitly include units in your answer (it is understood the unit is meter). Enter only a number. If you do enter a unit, your answer will be counted wrong.
Transcribed Image Text:You are imaging a pencil through a thin, converging lens as shown in the image below. If p (the distance from the object to the center of the thin lens) is 8.15m and the focal length of the thin lens is 0.42m, how far away (in meters) from the center of the thin lens is the real image located (the real image will be on the right-side of the lens in this particular example illustrated below)? Ray 1 Ray 1 focal point Ray 2 Sis Secondary Ray 3 Ray 3 Object Converging lens focal point Principal Real image Note: Do not explicitly include units in your answer (it is understood the unit is meter). Enter only a number. If you do enter a unit, your answer will be counted wrong.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Refraction of light
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax