A person bending forward to lift a load “with his back” (Fig. P12.51a) rather than “with his knees” can be injured by large forces exerted on the muscles and vertebrae. The spine pivots mainly at the fifth lumbar vertebra, with the principal supporting force provided by the erector spinalis muscle in the back. To see the magnitude of the forces involved, and to understand why back problems are common among humans, consider the model shown in Figure P12.51b for a person bending forward to lift a 200-N object. The spine and upper body are represented as a uniform horizontal rod of weight 350 N, pivoted at the base of the spine. The erector spinalis muscle, attached at a point two thirds of the way up the spine, maintains the position of the back. The angle between the spine and this muscle is 12.0°. Find the tension in the back muscle and the compressional force in the spine.

Physics for Scientists and Engineers
10th Edition
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter12: Static Equilibrium And Elasticity
Section: Chapter Questions
Problem 41AP: A stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = . A...
icon
Related questions
icon
Concept explainers
Topic Video
Question

A person bending forward to lift a load “with his back” (Fig. P12.51a) rather than “with his knees” can be injured by large forces exerted on the muscles and vertebrae. The spine pivots mainly at the fifth lumbar vertebra, with the principal supporting force provided by the erector spinalis muscle in the back. To see the magnitude of the forces involved, and to understand why back problems are common among humans, consider the model shown in Figure P12.51b for a person bending forward to lift a 200-N object. The spine and upper body are represented as a uniform horizontal rod of weight 350 N, pivoted at the base of the spine. The erector spinalis muscle, attached at a point two thirds of the way up the spine, maintains the position of the back. The angle between the spine and this muscle is 12.0°. Find the tension in the back muscle and the compressional force in the spine.

 

 width=

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning