To begin, we formulated a method in which each unknown substance and compound were compared to find their molar relationships. In the experiment we calculated the molar mass of every compound by determining the amount of moles per gram in each element using the periodic table and then added them together. We then
The purpose of this experiment is to identify an unknown substance by measuring the density and boiling point. I will be able to conclude which substance is my own from a list of known options stating what its real boiling point and density is.
There are many types of chemical bonds and forces that bind molecules together. The two most basic types of bonds are characterized as either ionic or covalent. In the lab we separated Citric Acid, Calcium Chloride, Sucrose, Potassium Iodine, Phenyl Salicylate ,and Sodium Chloride into two groups ionic and Covalent bonds .The Chemical Difference between ionic bonding and covalent bonding is, a covalent bond is formed between two nonmetals that have similar electronegativities. Metals are left half and center of the Periodic Table and Nonmetals are upper right of the Periodic Table. The electrical attraction between large numbers of cations and anions which is the transfer of the
1. Place a small amount of wax from a birthday candle into a test tube. Heat gently over a burner flame until the wax melts completely; then allow
Using elemental analysis to determine the percent mass composition of each element in a compound is the first step in creating an empirical formula. There are many different types of elemental analysis, but in this experiment gravitational analysis and Beer’s Law are used. Elemental analysis is first used to find the moles of each element, then converted to mass, and then the percent mass of the element in the product is found (2).
6-3: This process is used by cells to manufacture _biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products__
Day 1. Michael was coming home for vacation from college. When he got home he found out that
Purpose: To become familiar with the International System of Units and common laboratory equipment and techniques. To learn how to determine volume, mass, length, and temperature of a wide variety of items. To learn how to calculate density and concentration of dilutions.
The purpose of this lab was to identify unknown substances using density. We had three unknown substances; a yellow liquid and two metal rods. For each substance we measured volume using the water displacement method in a graduated cylinder and mass using a triple beam balance. Then we calculated density using the formula density (g/cm3)= mass (g)/volume (cm3). The data we collected in the lab is in the table below. After comparing our data with the density chart we were able to determine the identities of the substances. The liquid was cooking oil and the rods 1 and 2 were copper and aluminium, respectively. In conclusion, density - a characteristic property- is important because even though many substances may look the same but have different
In experiment 3.11, we found out whether or not a larger amount of a liquid would get hotter when it boils. To answer this, we heated a specific amount of unknown liquid and recorded the temperature every fifteen seconds. In our scatter plot, we were able to find the boiling point of our liquid. We know that the slope of our graphs is when the liquid molecules were moving around and heating up. The plateau of our graph points is where the liquid started to evaporate and boil. This is were we found our boiling point at. Shantel and I decided that our boiling point was about 98º Celsius. If you had another slope in your graph, that was when you were simply heating the leftover gas. The histogram showed us that there were about equal amounts of data in the higher temperature (about 95º Celsius) bins for both 20mL of liquid and 10mL of liquid. Also, in the lower temperature bins (75º to 80º Celsius) there was about equal amount of data for 20mL of liquid and 10mL of liquid. There was 7 pieces of data for 10mL of liquid in the lower bins, and 6 pieces of data for 20mL of liquid. If a larger amount of liquid did have a higher boiling point, the clusters would be organized by volumes or amount. For example, all of the 20mL pieces of data would be in the higher temperature bins, and all of the 10mL pieces of data would be in the lower temperature bins or flipped. Rather, the bins were clustered by identity. The boiling point is a characteristic property.
The purpose of this lab was to become familiar with the three different balances and two different methods used to find the weight and mass of chemicals and compounds in the ChemLab program. The lab was performed by using three different types of balances, and the direct weighing and weighing by difference methods.
Atoms are the basic units of matter and all life is based on them. Life on earth is based on the element carbon. It is a highly versatile atom able to form four covalent bonds with itself or other atoms such as hydrogen and water. Atoms combine to form molecules and those that are carbon based are referred to as organic molecules. Organic molecules occur in four different types in living cells; carbohydrates, lipids, proteins and nucleic acids. They are also known as hydrocarbons due to the presence of both hydrogen and carbon. Carbohydrates are made up of carbon, hydrogen and oxygen in the ratio 1:2:1. They are important sources of energy and are classified in three main groups; monosaccharides, disaccharides and polysaccharides.
In the fourth stage of this experiment, the density of a gas was determined. A 250ml flask was weighed with an empty rubber balloon and the mass was recorded.
4. Determine the mass of the mixture by subtracting the mass of the empty evaporating dish from the mass of the evaporating dish containing the mixture and record the calculated mass onto the data sheet.