1. A satellite is spinning at 6 rev/s. The satellite consists of a main body in the shape of a sphere of radius 2 m and a mass of 800 kg, and two antennas projecting out from the surface of the main body that can be approximated with rods of length 4 m each and mass 10 kg. The antennas lie in the plane of rotation. See the figure below. M L Ms R MrL Things to think about: 1. The system is made of one sphere and two rods attached to the surface of the sphere. The total moment of inertia of the system is the sum of individual moments of inertia. 2. The axis of rotation for the system is about the center of the sphere. How can you calculate

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter11: Angular Momentum
Section: Chapter Questions
Problem 46P: A satellite is spinning at 6.0 rev/s. The satellite consists of a main body in the shape of a sphere...
icon
Related questions
icon
Concept explainers
Question
1. A satellite is spinning at 6 rev/s. The satellite consists of a main body in the shape of a sphere of
radius 2 m and a mass of 800 kg, and two antennas projecting out from the surface of the main body
that can be approximated with rods of length 4 m each and mass 10 kg. The antennas lie in the plane
of rotation. See the figure below.
ML
Ms
R
M₁L
Things to think about:
1. The system is made of one sphere and two rods attached to the surface of the sphere. The
total moment of inertia of the system is the sum of individual moments of inertia.
2. The axis of rotation for the system is about the center of the sphere. How can you calculate
Transcribed Image Text:1. A satellite is spinning at 6 rev/s. The satellite consists of a main body in the shape of a sphere of radius 2 m and a mass of 800 kg, and two antennas projecting out from the surface of the main body that can be approximated with rods of length 4 m each and mass 10 kg. The antennas lie in the plane of rotation. See the figure below. ML Ms R M₁L Things to think about: 1. The system is made of one sphere and two rods attached to the surface of the sphere. The total moment of inertia of the system is the sum of individual moments of inertia. 2. The axis of rotation for the system is about the center of the sphere. How can you calculate
Things to think about:
1. The system is made of one sphere and two rods attached to the surface of the sphere. The
total moment of inertia of the system is the sum of individual moments of inertia.
2. The axis of rotation for the system is about the center of the sphere. How can you calculate
the moment of inetia of the rods about this axis? How far are the center of mass of the rods
away from the axis of rotation?
3. What is the moment of inertia of a rod about an axis through the center of the rod?
(a) Calculate the total moment of intertia of the system about an axis passing through the center of
the sphere.
total
kg m²
(b) What is the magnitude of the angular momentum of the satellite?
L=
kg m²/s
Transcribed Image Text:Things to think about: 1. The system is made of one sphere and two rods attached to the surface of the sphere. The total moment of inertia of the system is the sum of individual moments of inertia. 2. The axis of rotation for the system is about the center of the sphere. How can you calculate the moment of inetia of the rods about this axis? How far are the center of mass of the rods away from the axis of rotation? 3. What is the moment of inertia of a rod about an axis through the center of the rod? (a) Calculate the total moment of intertia of the system about an axis passing through the center of the sphere. total kg m² (b) What is the magnitude of the angular momentum of the satellite? L= kg m²/s
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning