10. A retail store in Des Moines, Iowa, receives shipments of a particular product from Kansas City and Minneapolis. Let x = number of units of the product received from Kansas City y = number of units of the product received from Minneapolis a. Write an expression for the total number of units of the product received by the retail store in Des Moines. b. Shipments from Kansas City cost $0.20 per unit, and shipments from Minneapolis cost $0.25 per unit. Develop an objective function representing the total cost of ship- ments to Des Moines. c. Assuming the monthly demand at the retail store is 5000 units, develop a constraint that requires 5000 units to be shipped to Des Moines. d. No more than 4000 units can be shipped from Kansas City, and no more than 3000 units can be shipped from Minneapolis in a month. Develop constraints to model this situation. e. Of course, negative amounts cannot be shipped. Combine the objective function and constraints developed to state a mathematical model for satisfying the demand at the Des Moines retail store at minimum cost.

ENGR.ECONOMIC ANALYSIS
14th Edition
ISBN:9780190931919
Author:NEWNAN
Publisher:NEWNAN
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
icon
Related questions
Question
100%
10. A retail store in Des Moines, Iowa, receives shipments of a particular product from Kansas
City and Minneapolis. Let
x = number of units of the product received from Kansas City
y = number of units of the product received from Minneapolis
a. Write an expression for the total number of units of the product received by the retail
store in Des Moines.
b. Shipments from Kansas City cost $0.20 per unit, and shipments from Minneapolis
cost $0.25 per unit. Develop an objective function representing the total cost of ship-
ments to Des Moines.
c. Assuming the monthly demand at the retail store is 5000 units, develop a constraint
that requires 5000 units to be shipped to Des Moines.
d. No more than 4000 units can be shipped from Kansas City, and no more than 3000
units can be shipped from Minneapolis in a month. Develop constraints to model this
situation.
e. Of course, negative amounts cannot be shipped. Combine the objective function and
constraints developed to state a mathematical model for satisfying the demand at the
Des Moines retail store at minimum cost.
Transcribed Image Text:10. A retail store in Des Moines, Iowa, receives shipments of a particular product from Kansas City and Minneapolis. Let x = number of units of the product received from Kansas City y = number of units of the product received from Minneapolis a. Write an expression for the total number of units of the product received by the retail store in Des Moines. b. Shipments from Kansas City cost $0.20 per unit, and shipments from Minneapolis cost $0.25 per unit. Develop an objective function representing the total cost of ship- ments to Des Moines. c. Assuming the monthly demand at the retail store is 5000 units, develop a constraint that requires 5000 units to be shipped to Des Moines. d. No more than 4000 units can be shipped from Kansas City, and no more than 3000 units can be shipped from Minneapolis in a month. Develop constraints to model this situation. e. Of course, negative amounts cannot be shipped. Combine the objective function and constraints developed to state a mathematical model for satisfying the demand at the Des Moines retail store at minimum cost.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Regression Model
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
ENGR.ECONOMIC ANALYSIS
ENGR.ECONOMIC ANALYSIS
Economics
ISBN:
9780190931919
Author:
NEWNAN
Publisher:
Oxford University Press
Principles of Economics (12th Edition)
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education