
Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
40

Transcribed Image Text:202
Groups
45.
30. Express U(165) as an internal direct product of proper subgroups
46.
in four different
ways.
31. Let R denote the group of all nonzero real numbers under multi
plication. Let R denote the group of positive real numbers under
multiplication. Prove that R* is the internal direct product of R+
and the subgroup {1, -1}
32. Prove that D, cannot be expressed as an internal direct product of
two proper subgroups.
33. Let H and K be subgroups of a group G. If G = HK and g = hk.
where h E H and k E K, is there any relationship among Igl, Ihl,
47.
48.
49.
4
50.
and lkl? What if G = H X K?
51
34. In Z, let H = (5) and K = (7). Prove that Z = HK. Does Z = HX K
{3a6 10c I a, b, c E Z} under multiplication and H =
35. Let G
{3a6b12c I a, b, c E Z} under multiplication. Prove that G = (3) x
(6) X (10), whereas H (3) x (6) X (12).
36. Determine all subgroups of R* (nonzero reals under multiplica-
tion) of index 2
37. Let G be a finite group and let H be a normal subgroup of G. Prove
that the order of the element gH in G/H must divide the order
of g in G.
52
53
54
38. Let H bea normal subgroup of G and let a belong to G. If the ele-
ment aH has order 3 in the group G/H and H =10, what are the
possibilities for the order of a?
39. If H is a normal subgroup of a group G, prove
tralizer of H in G, is a normal subgroup of G.
1t
that C(H), the cen-
40. Let d be an isomorphism from a group G onto a group G. Prove
that if H is a normal subgroup of G, then d(H) is a normal sub-
group of G.
41. Show that Q, the group of rational numbers under addition, has no
proper subgroup of finite index.
42. An element is called a square if it can be expressed in the form b
for some b. Suppose that G is an Abelian group and H is a sub-
group of G. If every element of H is a square and every element of
GIH is a square, prove that every element of G is a square. Does
your proof remain valid when "square" is replaced by "nth power,
where n is any integer?
43. Show, by example, that in a factor group G/H it can happen that
aH bH but lal lbl.
44. Observe from the table for A given in Table 5.1 on page 111 that
the subgroup given in Example 9 of this chapter is the only sub-
group of A, of order 4. Why does this imply that this subgroup
must be normal in A? Generalize this to arbitrary finite groups.
4
Expert Solution

Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
9. Suppose that and are subgroups of the abelian group such that . Prove that .
arrow_forward
Exercises
3. Find an isomorphism from the additive group to the multiplicative group of units .
Sec.
16. For an integer , let , the group of units in – that is, the set of all in that have multiplicative inverses, Prove that is a group with respect to multiplication.
arrow_forward
5. For any subgroup of the group , let denote the product as defined in Definition 4.10. Prove that corollary 4.19:
arrow_forward
Prove or disprove that H={ [ 1a01 ]|a } is a normal subgroup of the special linear group SL(2,).
arrow_forward
let Un be the group of units as described in Exercise16. Prove that [ a ]Un if and only if a and n are relatively prime. Exercise16 For an integer n1, let G=Un, the group of units in n that is, the set of all [ a ] in n that have multiplicative inverses. Prove that Un is a group with respect to multiplication.
arrow_forward
Exercises
31. Let be a group with its center:
.
Prove that if is the only element of order in , then .
arrow_forward
Prove that each of the following subsets H of GL(2,C) is subgroup of the group GL(2,C), the general linear group of order 2 over C a. H={ [ 1001 ],[ 1001 ],[ 1001 ],[ 1001 ] } b. H={ [ 1001 ],[ i00i ],[ i00i ],[ 1001 ] }
arrow_forward
Exercises
18. Suppose and let be defined by . Prove or disprove that is an automorphism of the additive group .
arrow_forward
Suppose that the abelian group G can be written as the direct sum G=C22C3C3, where Cn is a cyclic group of order n. Prove that G has elements of order 12 but no element of order greater than 12. Find the number of distinct elements of G that have order 12.
arrow_forward
Let H1={ [ 0 ],[ 6 ] } and H2={ [ 0 ],[ 3 ],[ 6 ],[ 9 ] } be subgroups of the abelian group 12 under addition. Find H1+H2 and determine if the sum is direct.
arrow_forward
11. Assume that are subgroups of the abelian group such that the sum is direct. If is a subgroup of for prove that is a direct sum.
arrow_forward
13. Assume that are subgroups of the abelian group . Prove that if and only if is generated by
arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,