23 m³/hr of air at 600 kPa, 330 K enters a well-insulated, horizontal pipe having a diameter of 1.2 cm a exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant spec heat, c = 1.007 kJ/kg-K for air at 330K. Determine the mass flow rate, in kg/s, and the exit velocity, in m/s. Step 1 Determine the mass flow rate in kg/s

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Question 17
23 m³/hr of air at 600 kPa, 330 K enters a well-insulated, horizontal pipe having a diameter of 1.2 cm and
exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant specific
heat, c = 1.007 kJ/kg-K for air at 330K.
Determine the mass flow rate, in kg/s, and the exit velocity, in m/s.
Step 1
Determine the mass flow rate, in kg/s.
m₁
=
kg/s
Step 2
Determine the exit velocity, in m/s.
V₂ =
>
m/s
Transcribed Image Text:Question 17 23 m³/hr of air at 600 kPa, 330 K enters a well-insulated, horizontal pipe having a diameter of 1.2 cm and exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant specific heat, c = 1.007 kJ/kg-K for air at 330K. Determine the mass flow rate, in kg/s, and the exit velocity, in m/s. Step 1 Determine the mass flow rate, in kg/s. m₁ = kg/s Step 2 Determine the exit velocity, in m/s. V₂ = > m/s
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY