9. Solve the following differential equations: d?x dt? d?x dr + w?x(t) = 0 x(0) = 0 (at t 0) = vo а. b. + w?x(t) = 0 x(0) = A (at t 0) = vo Prove in both cases that x(t) oscillates with frequency w/2n. (McQuarrie 2-4)

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter3: The Quantum Theroy Of Light
Section: Chapter Questions
Problem 5P
icon
Related questions
icon
Concept explainers
Topic Video
Question
Pls answer number 9 thank you so much
1. Before Planck's theoretical work on blackbody radiation, Wien showed empirically that
AmaxT = 2.90 x10³ m-K
where Amax is the wavelength at which the blackbody spectrum has its maximum value at
a temperature T. This expression is called the Wien displacement law; derive it from the
theoretical expression for the blackbody distribution. (McQuarrie 1-5)
2. Calculate the number of photons in a 2.00 mJ light pulse at (a) 1.06 µm, (b) 537 nm, and
(c) 266 nm. (McQuarrie 1-13)
3. Given that the work function of chromium is 4.40 eV, calculate the kinetic energy of
electrons emitted from a chromium surface that is irradiated with ultraviolet radiation of
wavelength 200 nm. (McQuarrie 1-19)
4. A ground-state hydrogen atom absorbs a photon of light that has a wavelength of 97.2
nm. It then gives off a photon that has a wavelength of 486 nm. What is the final state of
the hydrogen atom? (McQuarrie 1-26)
5. Calculate the de Broglie wavelength for (a) an electron with a kinetic energy of 100 eV,
(b) a proton with a kinetic energy of 100 eV, and (c) an electron in the first Bohr orbit of a
hydrogen atom. (McQuarrie 1-38)
6. If we locate an electron to within 20 pm, then what is the uncertainty in its speed?
(McQuarrie 1-46)*
7. What is the uncertainty of the momentum of an electron if we know its position is
somewhere in a 10 pm interval? How does the value compare to momentum of an electron
in the first Bohr orbit? (McQuarrie 1-47)*
8. Solve the following differential equations:
Y- 4y = 0
y(0) = 2
(at x = 0) = 4
а.
dx2
d²y
b.
dx2
+ 6y = 0
y(0) = – 1
(at x = 0) = 0
- 2y = 0
У(0) %3D 2
(McQuarrie 2-2)
C.
dx
9. Solve the following differential equations:
+ w?x(t) = 0
x(0) = 0
(at t = 0) = vo
a.
dt?
d?x
b.
+ w°x(t) = 0
x(0) = A
(at t = 0) = vo
Prove in both cases that x(t) oscillates with frequency w/2n. (McQuarrie 2-4)
10. Prove that the number of nodes for a vibrating string clamped at both ends is n - 1 for the
nth harmonic. (McQuarrie 2-11)
Transcribed Image Text:1. Before Planck's theoretical work on blackbody radiation, Wien showed empirically that AmaxT = 2.90 x10³ m-K where Amax is the wavelength at which the blackbody spectrum has its maximum value at a temperature T. This expression is called the Wien displacement law; derive it from the theoretical expression for the blackbody distribution. (McQuarrie 1-5) 2. Calculate the number of photons in a 2.00 mJ light pulse at (a) 1.06 µm, (b) 537 nm, and (c) 266 nm. (McQuarrie 1-13) 3. Given that the work function of chromium is 4.40 eV, calculate the kinetic energy of electrons emitted from a chromium surface that is irradiated with ultraviolet radiation of wavelength 200 nm. (McQuarrie 1-19) 4. A ground-state hydrogen atom absorbs a photon of light that has a wavelength of 97.2 nm. It then gives off a photon that has a wavelength of 486 nm. What is the final state of the hydrogen atom? (McQuarrie 1-26) 5. Calculate the de Broglie wavelength for (a) an electron with a kinetic energy of 100 eV, (b) a proton with a kinetic energy of 100 eV, and (c) an electron in the first Bohr orbit of a hydrogen atom. (McQuarrie 1-38) 6. If we locate an electron to within 20 pm, then what is the uncertainty in its speed? (McQuarrie 1-46)* 7. What is the uncertainty of the momentum of an electron if we know its position is somewhere in a 10 pm interval? How does the value compare to momentum of an electron in the first Bohr orbit? (McQuarrie 1-47)* 8. Solve the following differential equations: Y- 4y = 0 y(0) = 2 (at x = 0) = 4 а. dx2 d²y b. dx2 + 6y = 0 y(0) = – 1 (at x = 0) = 0 - 2y = 0 У(0) %3D 2 (McQuarrie 2-2) C. dx 9. Solve the following differential equations: + w?x(t) = 0 x(0) = 0 (at t = 0) = vo a. dt? d?x b. + w°x(t) = 0 x(0) = A (at t = 0) = vo Prove in both cases that x(t) oscillates with frequency w/2n. (McQuarrie 2-4) 10. Prove that the number of nodes for a vibrating string clamped at both ends is n - 1 for the nth harmonic. (McQuarrie 2-11)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
Foundations of Astronomy (MindTap Course List)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:
9781337399920
Author:
Michael A. Seeds, Dana Backman
Publisher:
Cengage Learning
The Solar System
The Solar System
Physics
ISBN:
9781337672252
Author:
The Solar System
Publisher:
Cengage
Stars and Galaxies (MindTap Course List)
Stars and Galaxies (MindTap Course List)
Physics
ISBN:
9781337399944
Author:
Michael A. Seeds
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College