(a) An oscillating object repeats its motion every 3.3 seconds. (i) What is the period of this oscillation? (ii) What is its frequency? (iii) What is its phase rate (i.e. angular frequency)?

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter11: Dynamics Of Rigid Bodies
Section: Chapter Questions
Problem 11.15P
icon
Related questions
icon
Concept explainers
Topic Video
Question
(a) An oscillating object repeats its motion every 3.3 seconds. (i) What is the period of this oscillation?
(ii) What is its frequency? (iii) What is its phase rate (i.e. angular frequency)?
(b) A magnesium atom (mass of 24 proton masses) in a crystal is measured to oscillate with a frequency
of roughly 10l3 Hz. What is the effective spring constant of the forces holding that atom in the crystal?
(c) Sitting on a trampoline, a person with mass m sinks a distance Az below the trampoline's normal
level surface. (i) If the person gently bounces on the trampoline (without leaving its surface), what
would be the person's period of oscillation T?
(You should not need the person's mass, but if you think you do, assume and state a value.)
(ii) Find T for Az = 45 cm.
Check: For Az = 20 cm you should find T = 0.90 s.
Transcribed Image Text:(a) An oscillating object repeats its motion every 3.3 seconds. (i) What is the period of this oscillation? (ii) What is its frequency? (iii) What is its phase rate (i.e. angular frequency)? (b) A magnesium atom (mass of 24 proton masses) in a crystal is measured to oscillate with a frequency of roughly 10l3 Hz. What is the effective spring constant of the forces holding that atom in the crystal? (c) Sitting on a trampoline, a person with mass m sinks a distance Az below the trampoline's normal level surface. (i) If the person gently bounces on the trampoline (without leaving its surface), what would be the person's period of oscillation T? (You should not need the person's mass, but if you think you do, assume and state a value.) (ii) Find T for Az = 45 cm. Check: For Az = 20 cm you should find T = 0.90 s.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University