A heat recovery device involves transferring energy from the hot flue gases passing through an annular region to pressurized water flowing through the inner tube of the annulus. The inner tube has inner and outer diameters of 24 and 30 mm and is connected by 8 struts to an insulated outer tube of 70-mm diameter. Each strut is 3 mm thick and is integrally fabricated with the inner tube from carbon steel (k = 50 W/m-K). Do D₁,2 ↑ D₁,1 Water +1 = 3 mm +|+1= Gas h Consider conditions for which water at 300 K flows through the inner tube at 0.161 kg/s while flue gases at 800 K flow through the annulus, maintaining a convection coefficient of 100 W/m²-K on both the struts and the outer surface of the inner tube. What is the rate of heat transfer per unit length of tube from gas to the water? Use the Dittus-Boelter equation to obtain the water-side convection coefficient. Determine the rate of heat transfer per unit length of tube from gas to the water, in W/m. 9 = W/m

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter6: Forced Convection Over Exterior Surfaces
Section: Chapter Questions
Problem 6.38P
icon
Related questions
Question
A heat recovery device involves transferring energy from the hot flue gases passing through an annular region to pressurized water
flowing through the inner tube of the annulus. The inner tube has inner and outer diameters of 24 and 30 mm and is connected by 8
struts to an insulated outer tube of 70-mm diameter. Each strut is 3 mm thick and is integrally fabricated with the inner tube from
carbon steel (k = 50 W/m-K).
Do
D₁2
↑
Dil
Water
+ t = 3 mm
Gas
h
Consider conditions for which water at 300 K flows through the inner tube at 0.161 kg/s while flue gases at 800 K flow through the
annulus, maintaining a convection coefficient of 100 W/m²-K on both the struts and the outer surface of the inner tube. What is the
rate of heat transfer per unit length of tube from gas to the water? Use the Dittus-Boelter equation to obtain the water-side
convection coefficient.
Determine the rate of heat transfer per unit length of tube from gas to the water, in W/m.
q=
i
W/m
Transcribed Image Text:A heat recovery device involves transferring energy from the hot flue gases passing through an annular region to pressurized water flowing through the inner tube of the annulus. The inner tube has inner and outer diameters of 24 and 30 mm and is connected by 8 struts to an insulated outer tube of 70-mm diameter. Each strut is 3 mm thick and is integrally fabricated with the inner tube from carbon steel (k = 50 W/m-K). Do D₁2 ↑ Dil Water + t = 3 mm Gas h Consider conditions for which water at 300 K flows through the inner tube at 0.161 kg/s while flue gases at 800 K flow through the annulus, maintaining a convection coefficient of 100 W/m²-K on both the struts and the outer surface of the inner tube. What is the rate of heat transfer per unit length of tube from gas to the water? Use the Dittus-Boelter equation to obtain the water-side convection coefficient. Determine the rate of heat transfer per unit length of tube from gas to the water, in W/m. q= i W/m
Expert Solution
steps

Step by step

Solved in 7 steps with 8 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning