A homogeneous rod of mass M = 11 kg and length L - 12m spins around its center of mass with an angular speed w- 12 radian/s on a horizontal frictionless surface of a table. The location of the center of mass of the rod on the table is stationary although the center of mass is not pivoted to the table. As the rod spins, a point-like particle of mass m = 2 kg is placed at rest on the table as shown in the figure and the end of the rod collides elastically with it. After the collision, the rod has only a translational motion, and no rotational motion. What is the speed v of the rod, in units of m/s, after the collision? (Suggestion: You may use conservation of linear momentum and conservation of angular momentum (about the fixed point on the table where the center of mass of the rod was initially spinning on.) (The morment of inertia of the rod about the axis through the center of mass I-ML) O 24.00 O 6.00 O 30.00 12.00 O 36.00

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A homogeneous rad of mass M = 11 kg and length L = 12 m spins around its center of mass with an angular speed
w = 12 radian/s on a horizontal frictionless surface of a table. The location of the center of mass of the rod on the table is stationary
although the center of mass is not pivoted to the table. As the rod spins, a point-like particle of mass m = 2 kg is placed at rest on
the table as shown in the figure and the end of the rod collides elastically with it. After the collision, the rod has only a translational
motion, and no rotational motion. What is the speed v of the rod, in units of m/s, after the collision?
(Suggestion: You may use conservation of linear momentum and conservation of angular momentum (about the fixed point on the
table where the center of mass of the rod was initially spinning on.)
(The moment of inertia of the rod about the axis through the center of mass I = 1 ML?)
O 24.00
6.00
O 30.00
O 12.00
O 36.00
Transcribed Image Text:A homogeneous rad of mass M = 11 kg and length L = 12 m spins around its center of mass with an angular speed w = 12 radian/s on a horizontal frictionless surface of a table. The location of the center of mass of the rod on the table is stationary although the center of mass is not pivoted to the table. As the rod spins, a point-like particle of mass m = 2 kg is placed at rest on the table as shown in the figure and the end of the rod collides elastically with it. After the collision, the rod has only a translational motion, and no rotational motion. What is the speed v of the rod, in units of m/s, after the collision? (Suggestion: You may use conservation of linear momentum and conservation of angular momentum (about the fixed point on the table where the center of mass of the rod was initially spinning on.) (The moment of inertia of the rod about the axis through the center of mass I = 1 ML?) O 24.00 6.00 O 30.00 O 12.00 O 36.00
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Axial Load
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY