A playground is on the flat roof of a city school, h, = 6.70 m above the street below (see figure). The vertical wall of the building is h = 7.90 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of 0 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched. 18.0 m/s (b) Find the vertical distance by which the ball clears the wall. m (c) Find the horizontal distance from the wall to the point on the roof where the ball lands. m

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter2: Newtonian Mechanics-single Particle
Section: Chapter Questions
Problem 2.3P: If a projectile is fired from the origin of the coordinate system with an initial velocity υ0 and in...
icon
Related questions
Question

A playground is on the flat roof of a city school, hb = 6.70 m above the street below (see figure). The vertical wall of the building is h = 7.90 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of ? = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall.

A man on the ground kicking a ball to children on a flat rooftop is shown. The distance between the man and the building is labeled d. The height of the left wall of the building is labeled h. The motion of the ball is depicted as a parabola originating from the man on the ground and ending at the rooftop. The vector of the initial motion of the ball makes an angle ? with the horizontal.


(b) Find the vertical distance by which the ball clears the wall.
 m

(c) Find the horizontal distance from the wall to the point on the roof where the ball lands.
 m
A playground is on the flat roof of a city school, h, = 6.70 m above the street below (see figure). The vertical wall of the building is h = 7.90 m high, to form a 1.2-m-high railing around the playground. A ball has
fallen to the street below, and a passerby returns it by launching it at an angle of 0 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point
vertically above the wall.
(a) Find the speed at which the ball was launched.
18.0 V m/s
(b) Find the vertical distance by which the ball clears the wall.
m
(c) Find the horizontal distance from the wall to the point on the roof where the ball lands.
m
Transcribed Image Text:A playground is on the flat roof of a city school, h, = 6.70 m above the street below (see figure). The vertical wall of the building is h = 7.90 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of 0 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched. 18.0 V m/s (b) Find the vertical distance by which the ball clears the wall. m (c) Find the horizontal distance from the wall to the point on the roof where the ball lands. m
Expert Solution
Step 1

Height of playground above the street (hb) = 6.70 m Height of vertical wall of the building (h) = 7.90 m Railing of the wall around the playground (h1) = 1.2 m Angle of launch of the ball (θ) = 53oHorizontal distance of the building from the point of launch (d) = 24 m Time taken by the ball to reach a point vertically above the wall (t) = 2.20 seconds 

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Vector basics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning