A small bird’s wings can undergo a maximum displacement amplitude of 4.60 cm (distance from the tip of the wing to the horizontal). If the maximum acceleration of the wings is 18.7 m/s2, and we assume the wings are undergoing simple harmonic motion when beating, what is the oscillation frequency of the wingtips?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter16: Oscillations
Section: Chapter Questions
Problem 74PQ: The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the...
icon
Related questions
icon
Concept explainers
Topic Video
Question

A small bird’s wings can undergo a maximum displacement amplitude of 4.60 cm (distance from the tip of the wing to the horizontal). If the maximum acceleration of the wings is 18.7 m/s2, and we assume the wings are undergoing simple harmonic motion when beating, what is the oscillation frequency of the wingtips?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning