A solid sphere of uniform density has a mass of 2.42 kg and a radius of 0.432 meters. A force of 13.2 Newtons is applied tangentially to the equator of the sphere. If the sphere is free to rotate without friction about an axis perpendicular to the equator to which the 13.2 Newton force is applied, what is the angular acceleration α of the sphere caused by the applied force? It may be useful to bear in mind that the moment of inertia I for a solid sphere of uniform density is I = (2/5)MR^2 where M is the mass of the sphere and R is the radius of the sphere. Also, bear in mind in this case that the torque τ is τ = RF since the force F is applied tangentially to the equator. A. 15.3 rad/s^2 B. 31.5 rad/s^2 C. 50.3 rad/s^2 D. 68.5 rad/s^2

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter13: Rotation Ii: A Conservation Approach
Section: Chapter Questions
Problem 7PQ: A 12.0-kg solid sphere of radius 1.50 m is being rotated by applying a constant tangential force of...
icon
Related questions
icon
Concept explainers
Question

A solid sphere of uniform density has a mass of 2.42 kg and a radius of 0.432 meters. A force of 13.2 Newtons is applied tangentially to the equator of the sphere. If the sphere is free to rotate without friction about an axis perpendicular to the equator to which the 13.2 Newton force is applied, what is the angular acceleration α of the sphere caused by the applied force? It may be useful to bear in mind that the moment of inertia I for a solid sphere of uniform density is I = (2/5)MR^2 where M is the mass of the sphere and R is the radius of the sphere. Also, bear in mind in this case that the torque τ is τ = RF since the force F is applied tangentially to the equator.

A. 15.3 rad/s^2 B. 31.5 rad/s^2 C. 50.3 rad/s^2 D. 68.5 rad/s^2

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill