A student holds a bike wheel and starts it spinning with an initial angular speed of 9.0 rotations per second. The wheel is subject to some friction, so it gradually slows down. In the 10.0 s period following the inital spin, the bike wheel undergoes 77.5 complete rotations. Assuming the frictional torque remains constant, how much more time Ar, will it take the bike wheel to come to a complete stop? At, = The bike wheel has a mass of 0.825 kg and a radius of 0.315 m. If all the mass of the wheel is assumed to be located on the rim, find the magnitude of the frictional torque ry that was acting on the spinning wheel. N.m

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter11: Angular Momentum
Section: Chapter Questions
Problem 55P: A diver off the high board imparts an initial rotation with his body fully extended before going...
icon
Related questions
icon
Concept explainers
Question
A student holds a bike wheel and starts it spinning with an
initial angular speed of 9.0 rotations per second. The wheel is
subject to some friction, so it gradually slows down. In the
10.0 s period following the inital spin, the bike wheel
undergoes 77.5 complete rotations.
Assuming the frictional torque remains constant, how much
more time At, will it take the bike wheel to come to a
complete stop?
Ats =
S
The bike wheel has a mass of 0.825 kg and a radius of
0.315 m. If all the mass of the wheel is assumed to be located
on the rim, find the magnitude of the frictional torque 7† that
was acting on the spinning wheel.
N- m
Transcribed Image Text:A student holds a bike wheel and starts it spinning with an initial angular speed of 9.0 rotations per second. The wheel is subject to some friction, so it gradually slows down. In the 10.0 s period following the inital spin, the bike wheel undergoes 77.5 complete rotations. Assuming the frictional torque remains constant, how much more time At, will it take the bike wheel to come to a complete stop? Ats = S The bike wheel has a mass of 0.825 kg and a radius of 0.315 m. If all the mass of the wheel is assumed to be located on the rim, find the magnitude of the frictional torque 7† that was acting on the spinning wheel. N- m
Expert Solution
steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning