A toy car of mass m is pushed along a frictionless track so that it is moving at a speed v1. It hits a spring with stiffness k at the end of the track causing the spring to compress. What is the maximum compression x of the spring? By conservation of energy, K1 + U1 = K2 + U2 Some of the terms in the equation above are zero; thus it can be simplified to: ½m 2 = ½ Isolating the compression x, x = ( 2, 1/2 Suppose the mass of the toy car moving at 2.5 m/s is 0.0505 kg and the spring constant isk= 605 N/m, the spring will experience a maximum compression of 0.0 84 m.

Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Energy Of A System
Section: Chapter Questions
Problem 50CP: A particle of mass m = 1.18 kg is attached between two identical springs on a frictionless,...
icon
Related questions
icon
Concept explainers
Question
QUESTION 2
A toy car of mass m is pushed along a frictionless track so that it is moving at a speed v1. It hits a spring with stiffness k at the end of the
track causing the spring to compress. What is the maximum compression x of the spring?
By conservation of energy,
K1 + U1 = K2 + U2
Some of the terms in the equation above are zero; thus it can be simplified to:
2 = 2
Isolating the compression x,
X = (
21
)1/2
Suppose the mass of the toy car moving at 2.5 m/s is 0.0505 kg and the spring constant is k = 605 N/m, the spring will experience a maximum
compression of 0.0
84 m.
Transcribed Image Text:QUESTION 2 A toy car of mass m is pushed along a frictionless track so that it is moving at a speed v1. It hits a spring with stiffness k at the end of the track causing the spring to compress. What is the maximum compression x of the spring? By conservation of energy, K1 + U1 = K2 + U2 Some of the terms in the equation above are zero; thus it can be simplified to: 2 = 2 Isolating the compression x, X = ( 21 )1/2 Suppose the mass of the toy car moving at 2.5 m/s is 0.0505 kg and the spring constant is k = 605 N/m, the spring will experience a maximum compression of 0.0 84 m.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning