An open belt connects two flat pulleys. The pulley diameters are 300 mm and 450 mm and the corresponding angles of lap are 160° and 210°. The smaller pulley runs at 200 r.p.m. The coefficient of friction between the belt and pulley is 0.25. It is found that the belt is on the point of slipping when 3 kW is transmitted. To increase the power transmitted two alternatives are suggested, namely (i) increasing the initial tension by 10%, and (ii) increasing the coefficient of friction by 10% by the application of a suitable dressing to the belt. Which of these two methods would be more effective? Find the percentage increase in power possible in each case.

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter7: Dry Friction
Section: Chapter Questions
Problem 7.77P: The cone clutch transmits the torque C through a conical friction surface with cone angle . The...
icon
Related questions
Question

An open belt connects two flat pulleys. The pulley diameters are 300 mm and 450 mm and the corresponding angles of lap are 160° and 210°. The smaller pulley runs at 200 r.p.m. The coefficient of friction between the belt and pulley is 0.25. It is found that the belt is on the point of slipping when 3 kW is transmitted. To increase the power transmitted two alternatives are suggested, namely (i) increasing the initial tension by 10%, and (ii) increasing the coefficient of friction by 10% by the application of a suitable dressing to the belt. Which of these two methods would be more effective? Find the percentage increase in power possible in each case.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Axial Load
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L