BEER with a density of 789 kg/m3 from a non-elevated open reservoir (P1=0 bars) flows before the pump at 0.75 m/s. The beer is pumped at a rate of 15 m/s to a 5 meter elevated tank with a pressure reading of 0.69 Bars. assuming zero Friction losses, Calculate the actual work if the pump's efficiency is just 44%. Calculate the theoretical and actual power in hp for a mass of 100 kg and a time of 1 minute of Beer.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.32P
icon
Related questions
Question

BEER with a density of 789 kg/m3 from a non-elevated open reservoir (P1=0 bars) flows before the pump at 0.75 m/s. The beer is pumped at a rate of 15 m/s to a 5 meter elevated tank with a pressure reading of 0.69 Bars. assuming zero Friction losses, Calculate the actual work if the pump's efficiency is just 44%. Calculate the theoretical and actual power in hp for a mass of 100 kg and a time of 1 minute of Beer.  

Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning