Consider an electron confined to a box of length L = 436 pm. (a) A transition between energy levels can be induced by absorption of light whose photon energy matches the energy difference between the levels. Find the energy difference between the levels corresponding to n = 4 and n = 5 of this same box, and compute the wavelength of light (in m) that would cause a transition between them. What portion of the electromagnetic spectrum is this light? (b) For another box, suppose that this same transition (n = 4 →→ 5) was observed at a wavelength of 232 nm. How long is this box in pm?

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter3: The Quantum Theroy Of Light
Section: Chapter Questions
Problem 17P
icon
Related questions
Question

c) How does the classical kinetic energy of the free electron compare in magnitude with the result you obtained in the previous part?

Consider an electron confined to a box of length L = 436 pm.
(a) A transition between energy levels can be induced by absorption of light whose photon
energy matches the energy difference between the levels. Find the energy difference
between the levels corresponding to n = 4 and n = 5 of this same box, and compute the
wavelength of light (in m) that would cause a transition between them. What portion of
the electromagnetic spectrum is this light?
(b) For another box, suppose that this same transition (n = 4 →5) was observed at a
wavelength of 232 nm. How long is this box in pm?
Transcribed Image Text:Consider an electron confined to a box of length L = 436 pm. (a) A transition between energy levels can be induced by absorption of light whose photon energy matches the energy difference between the levels. Find the energy difference between the levels corresponding to n = 4 and n = 5 of this same box, and compute the wavelength of light (in m) that would cause a transition between them. What portion of the electromagnetic spectrum is this light? (b) For another box, suppose that this same transition (n = 4 →5) was observed at a wavelength of 232 nm. How long is this box in pm?
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Emission and absorption
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning