Consider the following equilibrium: 2NH, (g) N₂(g) + 3H₂(g) 1 AG=34. kJ Now suppose a reaction vessel is filled with 1.84 atm of ammonia (NH,) and 3.68 atm of nitrogen (N₂) at 1070. °C. Answer system: Under these conditions, will the pressure of N₂ tend to rise or fall? Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N, will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of N₂ will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. rise O fall O yes O no 0 sim 0.P X

Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Chapter13: Fundamental Equilibrium Concepts
Section: Chapter Questions
Problem 90E: In a 3.0-L vessel, the following equilibrium partial pressures are measured: N2, 190 torr; H2, 317...
icon
Related questions
Question
Consider the following equilibrium:
2NH, (g)
N₂(g) + 3H₂(g)
AG-34. kJ
Now suppose a reaction vessel is filled with 1.84 atm of ammonia (NH,) and 3.68 atm of nitrogen (N₂) at 1070. °C. Answer the follow
system:
1
Under these conditions, will the pressure of N₂ tend to rise or fall?
Is it possible to reverse this tendency by adding H₂?
In other words, if you said the pressure of N, will tend to rise, can that be
changed to a tendency to fall by adding H₂? Similarly, if you said the
pressure of N₂ will tend to fall, can that be changed to a tendency to rise
by adding H₂?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of H₂ needed to reverse it.
Round your answer to 2 significant digits.
rise
O fall
O yes
O no
0 atm
0.9
X
Transcribed Image Text:Consider the following equilibrium: 2NH, (g) N₂(g) + 3H₂(g) AG-34. kJ Now suppose a reaction vessel is filled with 1.84 atm of ammonia (NH,) and 3.68 atm of nitrogen (N₂) at 1070. °C. Answer the follow system: 1 Under these conditions, will the pressure of N₂ tend to rise or fall? Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N, will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of N₂ will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. rise O fall O yes O no 0 atm 0.9 X
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Chemical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning