cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: q(r) = q_0 [1 - (r/a)^2] W/m^3 where a is the radius of the fuel element and q_0 is constant. The boundary surface at r = a is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius a= 30mm, the thermal conductivity k = 10 W/m middot K and q_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.20P
icon
Related questions
Question
cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: q(r) = q_0 [1 - (r/a)^2] W/m^3 where a is the radius of the fuel element and q_0 is constant. The boundary surface at r = a is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius a= 30mm, the thermal conductivity k = 10 W/m middot K and q_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Properties of Fluids
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning