Design a bushed-pin type flexible coupling for connecting a motor shaft to a pump shall following service conditions : Power to be transmitted = 40 kW; speed of the motor shaft = = 50 mm ; diameter of the pump shaft = 45 mm. The bearing pressure in the rubber bush and allowable stress in the pins are to be limited to 0.45 N/mm2 and 25 MPa respectively. 1000 r.p.m. ; diameter of the motor shaft %3D %3D [Ans. d, = 20 mm; n = 6; d, = 40 mm ; /= 152 mm] %3D

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter3: Torsion
Section: Chapter Questions
Problem 3.7.8P: A tubular shaft being designed for use on a construction site must transmit 120 kW at 1,75 Hz, The...
icon
Related questions
Question
Design a bushed-pin type flexible coupling for connecting a motor shaft to a pump shaft for the
following service conditions :
Power to be transmitted = 40 kW ; speed of the motor shaft = 1000 r.p.m. ; diameter of the motor shaft
= 50 mm ; diameter of the pump shaft = 45 mm.
The bearing pressure in the rubber bush and allowable stress in the pins are to be limited to
0.45 N/mm2 and 25 MPa respectively.
%3D
!!
[Ans. d,
= 20 mm; n = 6; d, = 40 mm ;l = 152 mm]
!3!
COO01
Transcribed Image Text:Design a bushed-pin type flexible coupling for connecting a motor shaft to a pump shaft for the following service conditions : Power to be transmitted = 40 kW ; speed of the motor shaft = 1000 r.p.m. ; diameter of the motor shaft = 50 mm ; diameter of the pump shaft = 45 mm. The bearing pressure in the rubber bush and allowable stress in the pins are to be limited to 0.45 N/mm2 and 25 MPa respectively. %3D !! [Ans. d, = 20 mm; n = 6; d, = 40 mm ;l = 152 mm] !3! COO01
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Design of Permanent Joints
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning