During a trip to the beach (Patm = 101 kPa), a car runs out of gasoline (density is 750 kg/m^3), and it becomes necessary to siphon gas out of another nearby car to a tank of a volume of 4 litres using a hose whose cross-sectional area is 0.2 cm^2. The shown setting is used where L1=0.7 m and L2=2.2 m. Consider point 1 to be at the free surface of gasoline in the tank so that P_1=1 atm, V_1 ~= 0 since the tank is large relative to the tube diameter. Consider the gravitational acceleration to be 9.81 m/s^2. with the help of Bernoulli equation, the time needed to fill up the tank in seconds is: Select one: O a. 14.56 Ob. 26.51 Gasoline Oc. 53.97 siphoning tube L2 Gas tank LI

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
During a trip to the beach (Patm = 101 kPa), a car runs out of gasoline (density is 750 kg/m^3), and it becomes necessary to siphon gas out of another nearby car to a tank of a volume
of 4 litres using a hose whose cross-sectional area is 0.2 cm^2. The shown setting is used where L1=0.7 m and L2=2.2 m. Consider point 1 to be at the free surface of gasoline in the
tank so that P_1= 1 atm, V_1 -= 0 since the tank is large relative to the tube diameter. Consider the gravitational acceleration to be 9.81 m/s^2. with the help of Bernoulli equation, the
time needed to fill up the tank in seconds is:
Select one:
O a. 14.56
Ob. 26.51
Gasoline
siphoning
tube
OC. 53.97
L2
Gas
tank
LI
Gas can
Transcribed Image Text:During a trip to the beach (Patm = 101 kPa), a car runs out of gasoline (density is 750 kg/m^3), and it becomes necessary to siphon gas out of another nearby car to a tank of a volume of 4 litres using a hose whose cross-sectional area is 0.2 cm^2. The shown setting is used where L1=0.7 m and L2=2.2 m. Consider point 1 to be at the free surface of gasoline in the tank so that P_1= 1 atm, V_1 -= 0 since the tank is large relative to the tube diameter. Consider the gravitational acceleration to be 9.81 m/s^2. with the help of Bernoulli equation, the time needed to fill up the tank in seconds is: Select one: O a. 14.56 Ob. 26.51 Gasoline siphoning tube OC. 53.97 L2 Gas tank LI Gas can
During a trip to the beach (Patm = 101 kPa), a car runs out of gasoline (density is 750 kg/m^3), and it becomes necessary to siphon gas out of another nearby car to a tank of a volume
of 4 litres using a hose whose cross-sectional area is 0.2 cm^2. The shown setting is used where L1=0.7 m and L2=2.2 m. Consider point 1 to be at the free surface of gasoline in the
tank so that P_1= 1 atm, V_1 ~= 0 since the tank is large relative to the tube diameter. Consider the gravitational acceleration to be 9.81 m/s^2. Using Bernoulli equation, the pressure
at point_3 in kPa is:
Select one:
O a. 72.55
Z3
Ob. 122.34
Gasoline
OC. 79.66
siphoning
tube
L2
Gas
tank
L1
22
Gas can/
Transcribed Image Text:During a trip to the beach (Patm = 101 kPa), a car runs out of gasoline (density is 750 kg/m^3), and it becomes necessary to siphon gas out of another nearby car to a tank of a volume of 4 litres using a hose whose cross-sectional area is 0.2 cm^2. The shown setting is used where L1=0.7 m and L2=2.2 m. Consider point 1 to be at the free surface of gasoline in the tank so that P_1= 1 atm, V_1 ~= 0 since the tank is large relative to the tube diameter. Consider the gravitational acceleration to be 9.81 m/s^2. Using Bernoulli equation, the pressure at point_3 in kPa is: Select one: O a. 72.55 Z3 Ob. 122.34 Gasoline OC. 79.66 siphoning tube L2 Gas tank L1 22 Gas can/
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY