Consider an F-104 flying at Mach 2 at a standard altitude of 35,000 ft. Assume the boundary layer over the wing is turbulent. Assume the wing is an infinitely thin flat plate. Estimate the shear stress at a point 2 ft downstream of the leading edge.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.30P: Air at 1000C flows at an inlet velocity of 2 m/s between two parallel flat plates spaced 1 cm apart....
icon
Related questions
Question
Table B.2 Properties of the International Standard Atmosphere (ISA) between sea level and 20 km
geopotential altitude
9,000
9,500
Standard values at altitude
P (Pa)
8
0
Alt. (m)
T (K)
0
288.15 1 340.29
500 284.90 0.9887 338.37
1,000 281.65 0.9774 336.43
1,500 278.40 0.9662 334.49
2,000 275.15 0.9549 332.53
2,500 271.90 0.9436 330.56
3,000 268.65 0.9306 328.58
3,500 265.40 0.9210
326.58
4,000 262.15 0.9098 324.58
4,500 258.90 0.8985 322.56
255.65 0.8872 320.53
252.40 0.8759 318.48
249.15 0.8647 316.43
6,500
245.90 0.8534 314.36
7,000 242.65 0.8421 312.27
310.17
308.06
5,000
5,500
6,000
7,500 239.40 0.8308
8,000 236.15 0.8195
8,500
305.93
33,099
41,060 0.4052 0.5895 0.4812
38,251 0.3775 0.5566 0.4544
35,599 0.3513 0.5252
232.90 0.8083
0.3267
0.4951
229.65
0.7970 303.79
30,742 0.3040 0.4663
226.40 0.7857 301.63 28,523 0.2815 0.4389
0.4127
0.3877
10,000
0.3639
0.2655
0.2268
0.1851
223.15
0.7744
299.46 26,436 0.2609
10,500 219.90 0.7631 297.27 24,474 0.2415
11,000 216.65 0.7519 295.07 22,632 0.2234
12,000 216.65 0.7519 295.07 19,330 0.1908 0.3108
13,000 216.65 0.7519 295.07 16,510 0.1629
14,000 216.65 0.,7519 295.07 14,101 0.1392
15,000 216.65 0.7519 295.07 12,044 0.1189 0.1937 0.1581
16,000 216.65 0.7519 295.07 10,287 0.1015 0.1654 0.1350
17,000 216.65 0.7519 295.07 8,786 0.0867 0.1413 0.1153
18,000 216.65 0.7519 295.07 7,505 0.0741 0.1207 0.0985
19,000 216.65 0.7519 295.07 6,410 0.0633 0.1031 0.0842
20,000
216.65 0.7519 295.07 5,475 0.0540 0.0880 0.0718
a (m/s)
p (kg/m³) 0
μ/1₂
1
1
1.2250
1.1673 0.9529 0.9912
1.1117 0.9075 0.9823
1.0581 0.8638 0.9735
1.0065 0.8216 0.9645
0.9569 0.7811 0.9556
0.9091 0.7421 0.9465
0.8632 0.7055
101,325 1
95,461 0.9421
89,874 0.8870
84,556 0.8345
79,495
0.7846
74,682 0.7371
70,108 0.6919
65,764 0.6490
61,640 0.6083
57,728 0.5697
54,020 0.5331
50,506 0.4985 0.6971 0.5691 0.9006
47,181 0.4656 0.6597 0.5385
44,034 0.4346 0.6238 0.5092
0.9099
0.8191 0.6686
0.7768 0.6341
0.7361 0.6009
0.9375
0.9283
0.9191
0.2537
0.2167
P₁A₁V₁ = P₂A₂V₂
V
P₂+PZ=P₁+PZ
P/= P₁
V²
C₂T₁+2=C₂T₂+
0.8911 V₂ =
0.8818
0.8724
0.8628
0.4287 0.8532
0.4042 0.8436
0.3807 0.8339
0.3583 0.8241
0.8143
0.3369
0.3165
0.8044
0.2971
0.7944
p=pRT
a = √√YRT
V₁ =
Advanced Aircraft Design: Conceptual Design. Analysis and Optimization of Subsonic Civil Airplanes. First Edition. Egbert Torenbeck.
2013 by Tighert Torenbeek. Published 2013 by John Wiley & Sons, Lad.
C₂ =
h = c₂T
e = c₂T
P₂
P₁
Poz
P₁
=
0.7944
0.7944 M
0.7944
2(P₁-P₂)
√P[1-(A₂/A₂)²)
2(Po-P)
P
2(Po-P)
Ps
YR
Y-1
-) =)"
Y/(-1)
17/(-1).
(y + 1)²M
[4YM-2(y-1)]
2 (P₂)(x-1)/y
0.7944
0.7944
Y-1
0.7944 dp = -pvdv
0.7944
0.7944 T₁=To [1 + x2 ¹ Mi ¹
0.7944
²16) *-₁]
Y-
2a Po-Pi
1-y+2yM
Y+1
PD P² + 1) - / - 1
-7/(Y-1)
P₁ = Po [(1 + ² = 1¹ M³ ] "
2
P₁ = Po [(1 + ² = ¹ M²³)]*
-1/(-1)
(4)
Re, =
8 =
C
C₁:
8 =
"
=
Ca
1 2
M² y+1
5.2x
PuVx
Hoo
√Rex
0.664
a=
q=
Re
1.328
REL
0.37x
Re2
ci-ci-c|_ci
0.0592
Re
0.074
a=dc₁/da
C₂
Cp=
900
4a
√M²-1
C₂
Coat
REAR
(¹
1
μ= arcsin
(+1)/(-1)
1+57.3a0/(ne,AR)
1
M
Transcribed Image Text:Table B.2 Properties of the International Standard Atmosphere (ISA) between sea level and 20 km geopotential altitude 9,000 9,500 Standard values at altitude P (Pa) 8 0 Alt. (m) T (K) 0 288.15 1 340.29 500 284.90 0.9887 338.37 1,000 281.65 0.9774 336.43 1,500 278.40 0.9662 334.49 2,000 275.15 0.9549 332.53 2,500 271.90 0.9436 330.56 3,000 268.65 0.9306 328.58 3,500 265.40 0.9210 326.58 4,000 262.15 0.9098 324.58 4,500 258.90 0.8985 322.56 255.65 0.8872 320.53 252.40 0.8759 318.48 249.15 0.8647 316.43 6,500 245.90 0.8534 314.36 7,000 242.65 0.8421 312.27 310.17 308.06 5,000 5,500 6,000 7,500 239.40 0.8308 8,000 236.15 0.8195 8,500 305.93 33,099 41,060 0.4052 0.5895 0.4812 38,251 0.3775 0.5566 0.4544 35,599 0.3513 0.5252 232.90 0.8083 0.3267 0.4951 229.65 0.7970 303.79 30,742 0.3040 0.4663 226.40 0.7857 301.63 28,523 0.2815 0.4389 0.4127 0.3877 10,000 0.3639 0.2655 0.2268 0.1851 223.15 0.7744 299.46 26,436 0.2609 10,500 219.90 0.7631 297.27 24,474 0.2415 11,000 216.65 0.7519 295.07 22,632 0.2234 12,000 216.65 0.7519 295.07 19,330 0.1908 0.3108 13,000 216.65 0.7519 295.07 16,510 0.1629 14,000 216.65 0.,7519 295.07 14,101 0.1392 15,000 216.65 0.7519 295.07 12,044 0.1189 0.1937 0.1581 16,000 216.65 0.7519 295.07 10,287 0.1015 0.1654 0.1350 17,000 216.65 0.7519 295.07 8,786 0.0867 0.1413 0.1153 18,000 216.65 0.7519 295.07 7,505 0.0741 0.1207 0.0985 19,000 216.65 0.7519 295.07 6,410 0.0633 0.1031 0.0842 20,000 216.65 0.7519 295.07 5,475 0.0540 0.0880 0.0718 a (m/s) p (kg/m³) 0 μ/1₂ 1 1 1.2250 1.1673 0.9529 0.9912 1.1117 0.9075 0.9823 1.0581 0.8638 0.9735 1.0065 0.8216 0.9645 0.9569 0.7811 0.9556 0.9091 0.7421 0.9465 0.8632 0.7055 101,325 1 95,461 0.9421 89,874 0.8870 84,556 0.8345 79,495 0.7846 74,682 0.7371 70,108 0.6919 65,764 0.6490 61,640 0.6083 57,728 0.5697 54,020 0.5331 50,506 0.4985 0.6971 0.5691 0.9006 47,181 0.4656 0.6597 0.5385 44,034 0.4346 0.6238 0.5092 0.9099 0.8191 0.6686 0.7768 0.6341 0.7361 0.6009 0.9375 0.9283 0.9191 0.2537 0.2167 P₁A₁V₁ = P₂A₂V₂ V P₂+PZ=P₁+PZ P/= P₁ V² C₂T₁+2=C₂T₂+ 0.8911 V₂ = 0.8818 0.8724 0.8628 0.4287 0.8532 0.4042 0.8436 0.3807 0.8339 0.3583 0.8241 0.8143 0.3369 0.3165 0.8044 0.2971 0.7944 p=pRT a = √√YRT V₁ = Advanced Aircraft Design: Conceptual Design. Analysis and Optimization of Subsonic Civil Airplanes. First Edition. Egbert Torenbeck. 2013 by Tighert Torenbeek. Published 2013 by John Wiley & Sons, Lad. C₂ = h = c₂T e = c₂T P₂ P₁ Poz P₁ = 0.7944 0.7944 M 0.7944 2(P₁-P₂) √P[1-(A₂/A₂)²) 2(Po-P) P 2(Po-P) Ps YR Y-1 -) =)" Y/(-1) 17/(-1). (y + 1)²M [4YM-2(y-1)] 2 (P₂)(x-1)/y 0.7944 0.7944 Y-1 0.7944 dp = -pvdv 0.7944 0.7944 T₁=To [1 + x2 ¹ Mi ¹ 0.7944 ²16) *-₁] Y- 2a Po-Pi 1-y+2yM Y+1 PD P² + 1) - / - 1 -7/(Y-1) P₁ = Po [(1 + ² = 1¹ M³ ] " 2 P₁ = Po [(1 + ² = ¹ M²³)]* -1/(-1) (4) Re, = 8 = C C₁: 8 = " = Ca 1 2 M² y+1 5.2x PuVx Hoo √Rex 0.664 a= q= Re 1.328 REL 0.37x Re2 ci-ci-c|_ci 0.0592 Re 0.074 a=dc₁/da C₂ Cp= 900 4a √M²-1 C₂ Coat REAR (¹ 1 μ= arcsin (+1)/(-1) 1+57.3a0/(ne,AR) 1 M
Consider an F-104 flying at Mach 2 at a standard altitude of
35,000 ft. Assume the boundary layer over the wing is
turbulent. Assume the wing is an infinitely thin flat plate.
Estimate the shear stress at a point 2 ft downstream of the
leading edge.
Transcribed Image Text:Consider an F-104 flying at Mach 2 at a standard altitude of 35,000 ft. Assume the boundary layer over the wing is turbulent. Assume the wing is an infinitely thin flat plate. Estimate the shear stress at a point 2 ft downstream of the leading edge.
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

How do I calculate the T = 218.92 K ?

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning